Skip to main content
Log in

Preparation and characterization of Fe/TiO2 in the presence of ionic liquid to optimize the photocatalytic degradation of acetaminophen using the response surface methodology

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work was aimed to prepare Fe doped TiO2 on an ionic liquid template so that nanoparticles (IL-Fe/TiO2(Ar)) could be formed to degrade acetaminophen (ACE) using the photocatalytic process. The synthesized nanoparticles were characterized using XRD, DRS, FTIR and FESEM–EDX. IL-Fe/TiO2(Ar) enhanced ACE photodegradation using the response surface methodology based on central composite design. The results evidenced that the presence of the 1-octadecyl-3-methylimidazolium bromide template led to development of nanocrystals with a uniform, small grain size. Moreover, the band gap energy calculated for IL-Fe/TiO2(Ar) was observed to be 1.6 eV. The ANOVA results of the photodegradation process revealed a second term model with an adjusted R2 equal to 0.996. The results also showed an ACE removal efficiency of 90.35% under optimal conditions (IL-Fe/TiO2(Ar) dosage = 0.63 g/L, pH 9 and UV irradiation time = 90.35 min). According to the findings, the pseudo first order model was introduced to study photodegradation kinetics. The findings also yielded insight into the most effective variables on degradation of ACE, which were time, IL-Fe/TiO2(Ar) and pH, respectively. Moreover, IL-Fe/TiO2(Ar) had high potential for the removal of ACE by photodegradation and proved to be an appropriate method to obtain optimum operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Gómez-Avilés, M. Peñas-Garzón, J. Bedia, J.J. Rodriguez, C. Belver, Chem. Eng. J. 358, 1574–1582 (2019)

    Article  Google Scholar 

  2. M. Liu, R. Inde, M. Nishikawa, X. Qiu, D. Atarashi, E. Sakai, Y. Nosaka, K. Hashimoto, M. Miyauchi, ACS Nano 8, 7 (2014)

    Google Scholar 

  3. M. Malakootian, H. Mahdizadeh, A. Dehdarirad, M. Amiri Gharghani, J. Dispers. Sci. Technol. 40, 846–854 (2018)

    Article  Google Scholar 

  4. Y. Ling, G. Liao, P. Xu, L. Li, Sep. Purif. Technol. 216, 1–8 (2019)

    Article  Google Scholar 

  5. M. Malakootian, M. Pourshaban-Mazandarani, H. Hossaini, M.H. Ehrampoush, Process. Saf. Environ. 104, 334–345 (2016)

    Article  Google Scholar 

  6. N. Muir, J.D. Nichols, M.R. Stillings, J. Sykes, Curr. Med. Res. Opin. 13, 9 (1997)

    Google Scholar 

  7. T. Lin, S. Yu, W. Chen, Chemosphere 152, 1–9 (2016)

    Article  Google Scholar 

  8. A. Nasiri, F. Tamaddon, M.H. Mosslemin, M.A. Gharaghani, A. Asadipour, J. Mater. Sci.: Mater. Electron. 30, 9 (2019)

    Google Scholar 

  9. S.M. Peymani-Motlagh, A. Sobhani-Nasab, M. Rostami, H. Sobati, M. Eghbali-Arani, M. Fasihi-Ramandi, M.R. Ganjali, M. Rahimi-Nasrabadi, J. Mater. Sci.: Mater. Electron. 30, 7 (2019)

    Google Scholar 

  10. M. Malakootian, N. Olama, M. Malakootian, A. Nasiri, Int. J. Environ. Sci. Technol. (2018). https://doi.org/10.1007/s13762-018-1836-2

    Google Scholar 

  11. A.L. Ahmad, N.D. Zaulkiflee, A. Kusumastuti, M.M.H.S. Buddin, Ind. Eng. Chem. Res. 58, 2 (2019)

    Article  Google Scholar 

  12. V.H.N. Phong, T. Koottatep, S.K. Chapagain, A. Panuvatvanich, C. Polprasert, K.-H. Ahn, Environ. Eng. Res. 21, 2 (2016)

    Article  Google Scholar 

  13. C.-C. Su, C.A. Cada, M.L.P. Dalida, M.-C. Lu, Sep. Purif. Technol. 120, 43–51 (2013)

    Article  Google Scholar 

  14. E. Villaroel, J. Silva-Agredo, C. Petrier, G. Taborda, R.A. Torres-Palma, Ultrason. Sonochem. 21, 5 (2014)

    Article  Google Scholar 

  15. R. Andreozzi, V. Caprio, R. Marotta, D. Vogna, Water Res. 37, 5 (2003)

    Google Scholar 

  16. A. Aguinaco, F.J. Beltrán, J.F. García-Araya, A. Oropesa, Chem. Eng. J. 189–190, 275–282 (2012)

    Article  Google Scholar 

  17. C. Maria Magdalane, K. Kaviyarasu, N. Matinise, N. Mayedwa, N. Mongwaketsi, D. Letsholathebe, G.T. Mola, N. AbdullahAl-Dhabi, M.V. Arasu, M. Henini, J. Kennedy, M. Maaza, B. Jeyaraj, S. Afr. J. Chem. Eng. 26, 49–60 (2018)

    Google Scholar 

  18. A. Sobhani-Nasab, M. Rangraz-Jeddy, A. Avanes, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 26, 12 (2015)

    Google Scholar 

  19. A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, J. Mater. Sci.: Mater. Electron. 30, 6 (2019)

    Google Scholar 

  20. N. Seifvand, E. Kowsari, Ind. Eng. Chem. Res. 55, 40 (2016)

    Article  Google Scholar 

  21. M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, S. Bagheri, J. Mater. Sci.: Mater. Electron. 28, 20 (2017)

    Google Scholar 

  22. A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, M. Salavati-Niasari, H. Taqriri, S. Bagheri, K. Saberyan, J. Mater. Sci.: Mater. Electron. 26, 8 (2015)

    Google Scholar 

  23. X. Wang, Y. Tang, M.-Y. Leiw, T.-T. Lim, Appl. Catal. A 409–410, 257–266 (2011)

    Article  Google Scholar 

  24. S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, J. Mater. Sci.: Mater. Electron. 28, 5 (2017)

    Google Scholar 

  25. Y. Lai, W. Liu, J. Fang, F. Qin, M. Wang, F. Yu, K. Zhang, RSC Adv. 5, 114 (2015)

    Google Scholar 

  26. C.J. Lin, Y.H. Liou, Y. Zhang, C.L. Chen, C.-L. Dong, S.-Y. Chen, G.D. Stucky, Appl. Catal. B 127, 175–181 (2012)

    Article  Google Scholar 

  27. J. Łuczak, M. Paszkiewicz, A. Krukowska, A. Malankowska, A. Zaleska-Medynska, Adv. Colloid Interface Sci. 230, 13–28 (2016)

    Article  Google Scholar 

  28. J.R. Sivalingam, F.K. Chong, C.D. Wilfred, Bull. Chem. React. Eng. Catal. 13, 170–178 (2018)

    Article  Google Scholar 

  29. A.R. Khataee, M. Zarei, S.K. Asl, J. Electroanal. Chem. 648, 2 (2010)

    Article  Google Scholar 

  30. A. Ehsani, E. Kowsari, M. Dashti Najafi, R. Safari, H. Mohammad Shiri, J. Colloid Interface Sci. 503, 10–16 (2017)

    Article  Google Scholar 

  31. A. Mobeen Amanulla, S.K. Jasmine Shahina, R. Sundaram, C. Maria Magdalane, K. Kaviyarasu, D. Letsholathebe, S.B. Mohamed, J. Kennedy, M. Maaza, J. Photochem. Photobiol. B 183, 233–241 (2018)

    Article  Google Scholar 

  32. Y. Subba Reddy, C. Maria Magdalane, K. Kaviyarasu, G.T. Mola, J. Kennedy, M. Maaza, J. Phys. Chem. Solids 123, 43–51 (2018)

    Article  Google Scholar 

  33. A. León, P. Reuquen, C. Garín, R. Segura, P. Vargas, P. Zapata, P. Orihuela, Appl. Sci. 7, 49 (2017)

    Article  Google Scholar 

  34. K. Kasinathan, J. Kennedy, M. Elayaperumal, M. Henini, M. Malik, Sci. Rep. 6, 38064 (2016)

    Article  Google Scholar 

  35. D.C.L. Vasconcelos, V.C.O. Costa, E.H.M. Nunes, A.N.C.S. Sabioni, M. Gasparon, W.L. Vasconcelos, Mater. Sci. Appl. 02, 1375–1382 (2011)

    Google Scholar 

  36. J. Zhu, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Photochem. Photobiol. A 180, 196–204 (2006)

    Article  Google Scholar 

  37. B. Pal, T. Hata, K. Goto, G. Nogami, J. Mol. Catal. A 169, 1 (2001)

    Article  Google Scholar 

  38. R.H. Myers, D.C. Montgomery, C.M. Andreson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments (Wiley, New York, 2016)

    Google Scholar 

  39. L. Yang, L.E. Yu, M.B. Ray, Water Res. 42, 13 (2008)

    Article  Google Scholar 

  40. X. Zhang, F. Wu, X. Wu, P. Chen, N. Deng, J. Hazard. Mater. 157, 2 (2008)

    Google Scholar 

  41. C. Maria Magdalane, K. Kaviyarasu, J. Judith Vijaya, B. Siddhardha, B. Jeyaraj, J. Photochem. Photobiol. B 173, 23–34 (2017)

    Article  Google Scholar 

  42. R. Suich, J. Qual. Technol. 12, 4 (1980)

    Google Scholar 

Download references

Acknowledgments

This research was conducted at the Environmental Health Engineering Research Center and sponsored by the Vice-Chancellor for Research and Technology of the Kerman University of Medical Sciences. A note of appreciation is expressed here to the Vice-Chancellor and to all the University’s staff who provided assistance in the process of conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Malakootian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh Asadi, A.M., Malakootian, M. Preparation and characterization of Fe/TiO2 in the presence of ionic liquid to optimize the photocatalytic degradation of acetaminophen using the response surface methodology. J Mater Sci: Mater Electron 30, 14878–14889 (2019). https://doi.org/10.1007/s10854-019-01859-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01859-z

Navigation