Electrospinning of lightweight TiN fibers with superior microwave absorption

  • Yun Wei
  • Yupeng Shi
  • Xuefeng Zhang
  • Zhiyang Jiang
  • Yahong Zhang
  • Lei Zhang
  • Jingwei Zhang
  • Chunhong GongEmail author


In this work, the titanium nitride (TiN) ceramic fibers with average diameter of ~ 1 μm and length of tens of micrometer range were synthesized by electrospinning followed by thermal nitridation reaction. And their dielectric property and EM wave absorption performance were investigated in the GHz range. Due to the strong high-frequency polarization effect resulted from the large surface contact area of the obtained TiN fibers, satisfactory EM wave attenuation was achieved with a low absorbent content of only 14.5 wt%. Specifically, the composite TiN fibers displayed an ultrawide effective absorption bandwidth of 4.1 GHz with > 90% EM attenuation and an optimal reflection loss as high as − 47.2 dB at the thickness of 2 mm. The combined excellent EM absorption property with high-temperature and corrosion resistance, simple production procedure and low cost endow TiN fibers as a promising candidate for lightweight microwave absorption materials suitable for harsh application conditions.



This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21671057 and U1704253).


  1. 1.
    H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids. J. Mater. Chem. C 3, 7677–7690 (2015)CrossRefGoogle Scholar
  2. 2.
    Z. Jia, D. Lan, K. Lin, M. Qin, K. Kou, G. Wu, H. Wu, Progress in low-frequency microwave absorbing materials. J. Mater. Sci. Electron. 29, 17122–17136 (2018)CrossRefGoogle Scholar
  3. 3.
    H. Wu, G. Wu, L. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Duan, Y. Cui, B. Zhang, G. Ma, T. Wang, A novel microwave absorber of FeCoNiCuAl high-entropy alloy powders: adjusting electromagnetic performance by ball milling time and annealing. J. Alloy Compd. 773, 194–201 (2019)CrossRefGoogle Scholar
  5. 5.
    Y. Liu, X. Su, X. He, J. Xu, J. Wang, Y. Qu, C. Fu, Y. Wang, Dielectric and microwave absorption properties of ZrB2/Al2O3 composite ceramics. J. Mater. Sci. 30, 2630–2637 (2019)Google Scholar
  6. 6.
    G. He, Y. Duan, L. Song, X. Zhang, Doping strategy to boost electromagnetic property and gigahertz tunable electromagnetic attenuation of hetero-structured manganese dioxide. Dalton Trans. 48, 2407–2421 (2019)CrossRefGoogle Scholar
  7. 7.
    R. Mo, X. Yin, F. Ye, X. Liu, X. Ma, Q. Li, L. Zhang, L. Cheng, Electromagnetic wave absorption and mechanical properties of silicon carbide fibers reinforced silicon nitride matrix composites. J. Eur. Ceram. Soc. 39, 743–754 (2019)CrossRefGoogle Scholar
  8. 8.
    P. Liu, Y. Huang, J. Yan, Y. Zhao, Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J. Mater. Chem. C 4, 6362–6370 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Zhang, J. Zhang, X. Lv, L. Zhang, Y. Wei, S. Liu, Y. Shi, C. Gong, How to exhibit the efficient electromagnetic wave absorbing performance of RGO aerogels: less might be better. J. Mater. Sci. 29, 5496–5500 (2018)Google Scholar
  10. 10.
    Q. Liu, X. Liu, H. Feng, H. Shui, R. Yu, Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber. Chem. Eng. J. 314, 320–327 (2017)CrossRefGoogle Scholar
  11. 11.
    Z. Jia, K. Lin, G. Wu, H. Xing, H. Wu, Recent progresses of high-temperature microwave-absorbing materials. Nano 13(6), 1830005 (2018)CrossRefGoogle Scholar
  12. 12.
    B. Zhao, W. Zhao, G. Shao, B. Fan, R. Zhang, Morphology-control synthesis of a core–shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities. ACS Appl. Mater. Interfaces 7, 12951–12960 (2015)CrossRefGoogle Scholar
  13. 13.
    Y. Jia, K. Li, L. Xue, J. Ren, S. Zhang, H. Li, Mechanical and electromagnetic shielding performance of carbon fiber reinforced multilayered (PyC-SiC)n matrix composites. Carbon 111, 299–308 (2017)CrossRefGoogle Scholar
  14. 14.
    H. Wei, X. Yin, Z. Hou, F. Jiang, H. Xu, M. Li, L. Zhang, L. Cheng, A novel SiC-based microwave absorption ceramic with Sc2Si2O7 as transparent matrix. J. Eur. Ceram. Soc. 38, 4189–4197 (2018)CrossRefGoogle Scholar
  15. 15.
    C. Liang, C. Liu, H. Wang, L. Wu, Z. Jiang, Y. Xu, B. Shen, Z. Wang, SiC-Fe3O4 dielectric–magnetic hybrid nanowires: controllable fabrication, characterization and electromagnetic wave absorption. J. Mater. Chem. A 2, 16397–16402 (2014)CrossRefGoogle Scholar
  16. 16.
    H. Wang, L. Wu, J. Zhou, Y. Xu, H. Zhang, Z. Jiang, B. Shen, Z. Wang, Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires. J. Mater. Chem. A 3, 6517–6525 (2015)CrossRefGoogle Scholar
  17. 17.
    J. Kuang, P. Jiang, W. Liu, W. Cao, Synergistic effect of Fe-doping and stacking faults on the dielectric permittivity and microwave absorption properties of SiC whiskers. Appl. Phys. Lett. 106, 212903–212906 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Han, X. Yin, W. Duan, S. Ren, L. Zhang, L. Cheng, Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. J. Eur. Ceram. Soc. 36, 2695–2703 (2016)CrossRefGoogle Scholar
  19. 19.
    K. Zhang, M. Sun, W. Jiang, Y. Wang, D. Wang, F. Wu, A. Xie, W. Dong, A core shell polypyrrole@silicon carbide nanowire (Ppy@SiC) nanocomposite for the broadband elimination of electromagnetic pollution. RSC Adv. 6, 43056–43059 (2016)CrossRefGoogle Scholar
  20. 20.
    P. Wang, L. Cheng, Y. Zhang, L. Zhang, Flexible SiC/Si3N4 composite nanofibers with in situ embedded graphite for highly efficient electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9, 28844–28858 (2017)CrossRefGoogle Scholar
  21. 21.
    G. Cao, Y. Li, Q. Zhang, H. Wang, J. Ferreira, Fabrication of hollow tetrapod-like TiN nanostructures and its electrochemical property. J. Am. Ceram. Soc. 95, 2478–2480 (2012)CrossRefGoogle Scholar
  22. 22.
    S. Ishii, R.P. Sugavaneshwar, T. Nagao, Titanium nitride nanoparticles as plasmonic solar heat transducers. J. Phys. Chem. C 120, 2343–2348 (2016)CrossRefGoogle Scholar
  23. 23.
    W. Jiang, Q. Fu, H. Wei, A. Yao, TiN nanoparticles: synthesis and application as near-infrared photothermal agents for cancer therapy. J. Mater. Sci. 54, 5743–5756 (2019)CrossRefGoogle Scholar
  24. 24.
    C. Gong, J. Zhang, C. Yan, X. Cheng, J. Zhang, L. Yu, Z. Jin, Z. Zhang, Synthesis and microwave electromagnetic properties of nanosized titanium nitride. J. Mater. Chem. 22, 3370–3376 (2012)CrossRefGoogle Scholar
  25. 25.
    C. Gong, H. Meng, X. Zhao, X. Zhang, L. Yu, J. Zhang, Z. Zhang, Unique static magnetic and dynamic electromagnetic behaviors in titanium nitride/carbon composites driven by defect engineering. Sci. Rep. 6, 18927 (2016)CrossRefGoogle Scholar
  26. 26.
    R. Liu, N. Lun, Y.X. Qi, Y.J. Bai, H.L. Zhu, F.D. Han, X.L. Meng, J.Q. Bi, R.H. Fan, Microwave absorption properties of TiN nanoparticles. J. Alloy Compd. 509, 10032–10035 (2011)CrossRefGoogle Scholar
  27. 27.
    C. Yan, X. Cheng, Y. Zhang, D. Yin, C. Gong, L. Yu, J. Zhang, Z. Zhang, Ferromagnetism and microwave electromagnetism of iron-doped titanium nitride nanocrystals. J. Phys. Chem. C 116, 26006–26012 (2012)CrossRefGoogle Scholar
  28. 28.
    Y. Wei, L. Zhang, C.H. Gong, S.C. Liu, M.M. Zhang, Y.P. Shi, J.W. Zhang, Fabrication of TiN/carbon nanofibers by electrospinning and their electromagnetic wave absorption properties. J. Alloy Compd. 735, 1488–1493 (2018)CrossRefGoogle Scholar
  29. 29.
    C. Chen, L. Pan, S. Jiang, S. Yin, X. Li, J. Zhang, Y. Feng, J. Yang, Electrical conductivity, dielectric and microwave absorption properties of graphene nanosheets/magnesia composites. J. Eur. Ceram. Soc. 38, 1639–1646 (2018)CrossRefGoogle Scholar
  30. 30.
    H. Wu, S. Qu, K. Lin, Y. Qing, L. Wang, Y. Fan, Q. Fu, F. Zhang, Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol. 333, 150–159 (2018)CrossRefGoogle Scholar
  31. 31.
    P. Wang, L. Cheng, Y. Zhang, W. Yuan, H. Pan, H. Wu, Electrospinning of graphite/SiC hybrid nanowires with tunable dielectric and microwave absorption characteristics. Compos. Part A 104, 68–80 (2018)CrossRefGoogle Scholar
  32. 32.
    X. Yuan, L. Cheng, L. Kong, X. Yin, L. Zhang, Preparation of titanium carbide nanowires for application in electromagnetic wave absorption. J. Alloy Compd. 596, 132–139 (2014)CrossRefGoogle Scholar
  33. 33.
    J.J. Yang, Z.S. Jin, X.D. Wang, W. Li, J.W. Zhang, S.L. Zhang, X. Guo, Z. Zhang, Study on composition, structure and formation process of nanotube Na2Ti2O4 (OH)2. Dalton Trans. 20, 3898–3901 (2003)CrossRefGoogle Scholar
  34. 34.
    C. Gong, C. Yan, J. Zhang, X. Cheng, H. Pan, C. Zhang, L. Yu, Z. Zhang, Room-temperature ferromagnetism evolution in nanostructured titanium nitride superconductors-the influence of structural defects. J. Mater. Chem. 21, 15273–15278 (2011)CrossRefGoogle Scholar
  35. 35.
    X. Li, J. Feng, Y. Du, J. Bai, H. Fan, H. Zhang, Y. Peng, F. Li, One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 3, 5535–5546 (2015)CrossRefGoogle Scholar
  36. 36.
    S. Guo, L. Wang, H. Wu, Facile synthesis and enhanced electromagnetic wave absorption of thorny-like Fe–Ni alloy/ordered mesoporous carbon composite. Adv. Powder Technol. 26, 1250–1255 (2015)CrossRefGoogle Scholar
  37. 37.
    X. Zhang, P. Guan, X. Dong, Transform between the permeability and permittivity in the close-packed Ni nanoparticles. Appl. Phys. Lett. 97, 033107 (2010)CrossRefGoogle Scholar
  38. 38.
    X. Li, X. Han, Y. Du, P. Xu, Magnetic and electromagnetic properties of composites of iron oxide and Co–B alloy prepared by chemical reduction. J. Magn. Magn. Mater. 323, 14–21 (2011)CrossRefGoogle Scholar
  39. 39.
    P.B. Liu, Y.Q. Zhang, J. Yan, Y. Huang, L. Xia, Z.X. Guang, Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019)CrossRefGoogle Scholar
  40. 40.
    M. Han, X. Yin, L. Kong, M. Li, W. Duan, L. Zhang, L. Cheng, Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2, 16403–16409 (2014)CrossRefGoogle Scholar
  41. 41.
    D. Lan, M. Qin, R. Yang, S. Chen, H. Wu, Y. Fan, Q. Fu, F. Zhang, Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J. Colloid Interface Sci. 533, 481–491 (2019)CrossRefGoogle Scholar
  42. 42.
    X. Hong, Q. Wang, Z. Tang, W.Q. Khan, D. Zhou, T. Feng, Synthesis and electromagnetic absorbing properties of titanium carbonitride with quantificational carbon doping. J. Phys. Chem. C 120, 148–156 (2016)CrossRefGoogle Scholar
  43. 43.
    H. Meng, K.P. Song, H. Wang, J.J. Jiang, D. Li, Z. Han, Z.D. Zhang, Dielectric response of carbon coated TiC nanocubes at 2–18 GHz frequencies. J. Alloy Compd. 509, 490–493 (2011)CrossRefGoogle Scholar
  44. 44.
    M. Li, M. Han, J. Zhou, Q. Deng, X. Zhou, J. Xue, S. Du, X. Yin, Q. Huang, Novel scale-like structures of graphite/TiC/Ti3C2 hybrids for electromagnetic absorption. Adv. Electron. Mater. 4, 1700617 (2018)CrossRefGoogle Scholar
  45. 45.
    Y. Zhou, J. Muhammad, X. Zhang, D. Wang, Y. Duan, X. Dong, Z. Zhang, Novel nanocapsules with Co–TiC twin cores and regulable graphitic shells for superior electromagnetic wave absorption. RSC Adv. 8, 6397–6405 (2018)CrossRefGoogle Scholar
  46. 46.
    P. Wang, L. Cheng, L. Zhang, One-dimensional carbon/SiC nanocomposites with tunable dielectric and broadband electromagnetic wave absorption properties. Carbon 125, 207–220 (2017)CrossRefGoogle Scholar
  47. 47.
    X. Liu, L. Zhang, X. Yin, F. Ye, Y. Liu, L. Cheng, The microstructure and electromagnetic wave absorption properties of near-stoichiometric SiC fiber. Ceram. Int. 43, 3267–3273 (2016)CrossRefGoogle Scholar
  48. 48.
    H. Wang, L. Wu, J. Jiao, Y. Xu, H. Zhang, Z. Jiang, B. Shen, Z. Wang, Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires. J. Mater. Chem. A 3, 6517–6525 (2015)CrossRefGoogle Scholar
  49. 49.
    S. Dong, X. Zhang, P. Hu, W. Zhang, J. Han, P. Hu, Biomass-derived carbon and polypyrrole addition on SiC whiskers for enhancement of electromagnetic wave absorption. Chem. Eng. J. 359, 882–893 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Functional Polymer Composites, College of Chemistry and Chemical EngineeringHenan UniversityKaifengChina
  2. 2.National & Local Joint Engineering Research Center for Applied Technology of Hybrid NanomaterialsHenan UniversityKaifengChina
  3. 3.Innovative Center for Advanced MaterialsHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations