Advertisement

Enhanced electrical properties of BiFeO3–PbTiO3 based ceramics with suitable raw material

  • Zhuo Yu
  • Jiangtao Zeng
  • Abdelhadi Kassiba
  • Liaoying Zheng
  • Jiangguli Peng
  • Guorong LiEmail author
Article
  • 46 Downloads

Abstract

As for traditional lead-based piezoelectric ceramics, different lead raw materials have minor effect on ceramic’s properties. Meanwhile, poor electrical property is frequently observed in BiFeO3–PbTiO3 based ceramics due to their high leakage current. Here, Pb3O4 and PbO as two kinds of lead raw materials have been used for the preparation of BiFeO3–PbTiO3 based ceramics. The structure, composition, and electrical properties of the ceramics have been analyzed. Although both samples have the same phase structure, the BiFeO3–PbTiO3(PbO)sample exhibits better ferroelectric properties compared with the BiFeO3–PbTiO3(Pb3O4) sample due to the high conductivity in the BiFeO3–PbTiO3(Pb3O4) sample. Both EDS and XPS analysis can confirm the existence of Bi-rich grain boundary phase in BiFeO3–PbTiO3(Pb3O4) sample. In addition, it can be found that the concentration of oxygen vacancies and Fe2+ ions in BiFeO3–PbTiO3(Pb3O4) sample is significantly higher than that of in BiFeO3–PbTiO3(PbO) sample, which is in good consistent with the high conductivity in BiFeO3–PbTiO3(Pb3O4) sample. This result will be helpful to the suitable lead raw material for preparation of BiFeO3–PbTiO3 based piezoelectric ceramics with high resistivity.

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2016YFB0402701, 2016YFA0201103), the National Basic Research Program of China under Grant (No. 2015CB654605), National Nature Science Foundation of China (Nos. 51831010, 51672293, 11475240).

References

  1. 1.
    G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)CrossRefGoogle Scholar
  2. 2.
    T. Rojac, A. Bencan, B. Malic, G. Tutuncu, BiFeO3 ceramics: processing, electrical, and electromechanical properties. J. Am. Ceram. Soc. 97, 1993–2011 (2014)CrossRefGoogle Scholar
  3. 3.
    V.V. Shvartsman, W. Kleemann, R. Haumont, Large bulk polarization and regular domain structure in ceramic BiFeO3. Appl. Phys. Lett. 90, 172115 (2007)CrossRefGoogle Scholar
  4. 4.
    D. Lebeugle, D. Colson, A. Forget, Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl. Phys. Lett. 91, 022907 (2007)CrossRefGoogle Scholar
  5. 5.
    M.M. Kumar, A. Srinivas, S.V. Suryanarayana, Structure property relations in BiFeO3/BaTiO3 solid solutions. J. Appl. Phys. 87, 855–862 (2000)CrossRefGoogle Scholar
  6. 6.
    S.O. Leontsev, R.E. Eitel, Dielectric and piezoelectric properties in Mn-modified (1 − x)BiFeO3–xBaTiO3 ceramics. J. Am. Ceram. Soc. 92, 2957–2961 (2009)CrossRefGoogle Scholar
  7. 7.
    D.I. Woodward, I.M. Reaney, R.E. Eitel, Crystal and domain structure of the BiFeO3–PbTiO3 solid solution. J. Appl. Phys. 94, 3313–3318 (2003)CrossRefGoogle Scholar
  8. 8.
    T.P. Comyn, T. Stevenson, A.J. Bell, Piezoelectric properties of BiFeO3–PbTiO3 ceramics. J. Phys. IV 128, 13–17 (2005)Google Scholar
  9. 9.
    T.P. Comyn, S.P. McBride, A.J. Bell, Processing and electrical properties of BiFeO3–PbTiO3 ceramics. Mater. Lett. 58, 3844–3846 (2004)CrossRefGoogle Scholar
  10. 10.
    S. Bhattacharjee, S. Tripathi, Morphotropic phase boundary in (1 − x)BiFeO3–xPbTiO3: phase coexistence region and unusually large tetragonality. Appl. Phys. Lett. 91, 042903 (2007)CrossRefGoogle Scholar
  11. 11.
    W.M. Zhu, Z.G. Ye, Effects of chemical modification on the electrical properties of 0.67BiFeO3 − 0.33PbTiO3 ferroelectric ceramics. Ceram. Int. 30, 1435–1442 (2004)CrossRefGoogle Scholar
  12. 12.
    W.M. Zhu, Z.G. Ye, Improved dielectric and ferroelectric properties of high curie temperature (1 − x)BiFeO3–xPbTiO3 ceramics by aliovalent ionic substitution. Appl. Phys. Lett. 89, 232904 (2006)CrossRefGoogle Scholar
  13. 13.
    J.R. Cheng, L.E. Cross, Effects of La substituent on ferroelectric rhombohedral/tetragonal morphotropic phase boundary in (1 − x)(Bi, La)(Ga0.05Fe0.95)O3–xPbTiO3 piezoelectric ceramics. J. Appl. Phys. 94, 5188 (2003)CrossRefGoogle Scholar
  14. 14.
    W. Hu, X. Tan, BiFeO3–PbZrO3–PbTiO3 ternary system for high Curie temperature piezoceramics. J. Eur. Ceram. Soc. 31, 801–807 (2011)CrossRefGoogle Scholar
  15. 15.
    Z.A. Li, H.X. Yang, Transmission electron microscopy study of multiferroic (Bi1−xLax)FeO3–PbTiO3 with x = 0.1, 0.2, and 0.3. Appl. Phys. Lett. 90, 182904 (2007)CrossRefGoogle Scholar
  16. 16.
    Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 84, 1731–1733 (2004)CrossRefGoogle Scholar
  17. 17.
    T. Zheng, J. Wu, Quenched bismuth ferrite-barium titanate lead-free piezoelectric ceramics. J. Alloy. Compd. 67, 505–512 (2016)CrossRefGoogle Scholar
  18. 18.
    B. Ahmed, Study of the solid state reaction and the morphotropic phase boundary in Pb(Zr, Ti)O3–Pb(Fe1/5, Ni1/5, Sb3/5)O3 ceramics. Ceram. Int. 27, 91–97 (2001)CrossRefGoogle Scholar
  19. 19.
    C.H. Lu, D.P. Chang, Reaction sintering and characterization of lead magnesium niobate relaxor ferroelectric ceramics. J. Mater. Sci. 11, 363–367 (2000)Google Scholar
  20. 20.
    J. Zhang, S. Mo, H. Wang, Microstructure and electrical properties of PLZT ceramics from Pb3O4 as the lead source. J. Alloy. Compd. 50, 2838–2841 (2011)CrossRefGoogle Scholar
  21. 21.
    Y.D. Hou, M.K. Zhu, F. Gao, Effect of MnO2 addition on the structure and electrical properties of Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 ceramics. J. Am. Ceram. Soc. 87, 847–850 (2004)CrossRefGoogle Scholar
  22. 22.
    A. Slonopas, B.J. Foley, J.J. Choi, Charge transport in bulk CH3NH3PbI3 perovskite. J. Appl. Phys. 11, 074101 (2016)CrossRefGoogle Scholar
  23. 23.
    L. Jin, F. Li, D.J. Gree, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1–27 (2014)CrossRefGoogle Scholar
  24. 24.
    C.A. Randall, N. Kim, J.P. Kucera, W. Cao, Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677–688 (1998)CrossRefGoogle Scholar
  25. 25.
    J.F. Ihlefeld, D.T. Harris, R. Keech, Effects in perovskite ferroelectrics: fundamental limits and process-structure-property relations. J. Am. Ceram. Soc. 99, 2537–2557 (2016)CrossRefGoogle Scholar
  26. 26.
    M.H. Frey, Z. Xu, P. Han, The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics. Ferroelectrics 20, 337–353 (1998)CrossRefGoogle Scholar
  27. 27.
    Y. Guo, P. Xiao, R. Wen, Y. Wan, Critical roles of Mn-ions in enhancing the insulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics. J. Mater. Chem. C 32, 5811–5824 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Inorganic Functional Materials and DevicesShanghai Institute of Ceramics, Chinese Academy of SciencesShanghaiChina
  2. 2.Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Institut des Molécules et Matériaux du Mans (IMMM), CNRS, UMR 6283, Faculté des Sciences, Université du MaineLe Mans, Cedex 09France

Personalised recommendations