Dielectric and magnetic properties of cobalt doped γ-Fe2O3 nanoparticles

A Correction to this article was published on 20 December 2019

This article has been updated

Abstract

In this research work we study the influence of Co doping on structural, optical, dielectric and magnetic properties of γ-Fe2O3 (maghemite), which is synthesized by chemical co-precipitation process. The inverse spinel structure of γ-Fe2O3 and Co (5 wt%) doped γ-Fe2O3 nanoparticles is confirmed by X-ray Diffraction (XRD), Fourier transform Infrared and Raman techniques. The average particle size is calculated, using Transmission electron microscope is about 10.83 ± 1.83 nm and 14.76 ± 2.41 nm for undoped and Co doped maghemite nanoparticles respectively, also confirmed by XRD measurements. The introduction of Co to γ-Fe2O3 nanoparticles improves crystallization. The dielectric measurement (ϵr, tanδ) gives the deep insight of the microstructure of the samples. The dielectric constant (ϵr) reduced in case of Co doped γ-Fe2O3 nanoparticles, which is more likely due to reduction in defect density and enhancement in grain size and crystallization by introduction of Co into γ-Fe2O3 lattice. The enhancement in ac conductivity (σac) in case of Co doped γ-Fe2O3 is due to fast hopping process between Fe2+/Fe3+ in undoped maghemite, increase in conducting grain volume and charge density (detached from traps + conducting charge carriers) in Fe2+/Fe3+ and Co2+/Co3+ in doped maghemite nanoparticles. The blocking temperature shifted from 62 to 88 K, which is most possibly due to increased grain size, enhanced interaction of dipole–dipole and probably increase the potential barrier for thermal instabilities. Both samples show superparamagnetic characteristic and the saturation magnetization (Ms) is increased from 30 to 35 emu/g in case of Co doped maghemite nanoparticles. This is due to Co and lattice spins parallel alignment in maghemite nanoparticles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Change history

  • 20 December 2019

    The original version of this article unfortunately published with few errors in Figure 1 and Table 1 which was reported to the Editorial Office. This has been corrected by publishing this Erratum.

References

  1. 1.

    S. Sun, Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater. 18, 393–403 (2006)

    CAS  Article  Google Scholar 

  2. 2.

    P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. González-Carreño, C.J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 36, R182 (2003)

    CAS  Article  Google Scholar 

  3. 3.

    Q.A. Pankhurst, J. Connolly, S. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, R167 (2003)

    CAS  Article  Google Scholar 

  4. 4.

    Y.S. Kang, D.K. Lee, C.S. Lee, P. Stroeve, In situ observation of domain structure in monolayers of arachidic acid/γ-Fe2O3 nanoparticle complexes at the air/water interface. J. Phys. Chem. B 106, 9341–9346 (2002)

    CAS  Article  Google Scholar 

  5. 5.

    A. Dyal et al., Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. J. Am. Chem. Soc. 125, 1684–1685 (2003)

    CAS  Article  Google Scholar 

  6. 6.

    K. Woo, H.J. Lee, J.P. Ahn, Y.S. Park, Sol–gel mediated synthesis of Fe2O3 nanorods. Adv. Mater. 15, 1761–1764 (2003)

    CAS  Article  Google Scholar 

  7. 7.

    S. Chakrabarti, S. Mandal, S. Chaudhuri, Cobalt doped γ-Fe2O3 nanoparticles: synthesis and magnetic properties. Nanotechnology 16, 506 (2005)

    CAS  Article  Google Scholar 

  8. 8.

    A. Ngo, P. Bonville, M. Pileni, Spin canting and size effects in nanoparticles of nonstoichiometric cobalt ferrite. J. Appl. Phys. 89, 3370–3376 (2001)

    CAS  Article  Google Scholar 

  9. 9.

    X. Battle, A. Labarta, Finite-size effects in fine particles: magnetic and transport properties. J. Phys. D Appl. Phys. 35(6), R15–R42 (2002)

    Article  Google Scholar 

  10. 10.

    K.-J. Lee et al., Protective effect of maghemite nanoparticles on ultraviolet-induced photo-damage in human skin fibroblasts. Nanotechnology 18, 465201 (2007)

    Article  Google Scholar 

  11. 11.

    Zulfiqar, R. Khan, M.U. Rahman, Z. Iqbal, Variation of structural, dielectric and magnetic properties of PVP coated γ-Fe2O3 nanoparticles. J. Mater. Sci. Mater. Electron. 27, 12490–12498 (2016)

    CAS  Article  Google Scholar 

  12. 12.

    G. Goya, T. Berquo, F. Fonseca, M. Morales, Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520–3528 (2003)

    CAS  Article  Google Scholar 

  13. 13.

    Zulfiqar, M.U. Rahman, M. Usman, S.K. Hasanain, A. Ullah, I.W. Kim, Static magnetic properties of Maghemite nanoparticles. J. Korean Phys. Soc. 65, 1925–1929 (2014)

    CAS  Article  Google Scholar 

  14. 14.

    P. Sahay, R. Mishra, S. Pandey, S. Jha, M. Shamsuddin, Structural, dielectric and photoluminescence properties of co-precipitated Zn-doped SnO2 nanoparticles. Curr. Appl. Phys. 13, 479–486 (2013)

    Article  Google Scholar 

  15. 15.

    A. Sheikh, V. Mathe, Anomalous electrical properties of nanocrystalline Ni–Zn ferrite. J. Mater. Sci. 43, 2018–2025 (2008)

    CAS  Article  Google Scholar 

  16. 16.

    Y. Yamazaki, M. Satou, High frequency conductivity in cobalt–iron ferrite. Jpn. J. Appl. Phys. 12, 998 (1973)

    CAS  Article  Google Scholar 

  17. 17.

    T. Orth, M. Möller, J. Pelzl, W. Schmitt, B. Köhler, Characterisation of the anisotropy behaviour of different cobalt modified γ-Fe2O3 tapes. J. Magn. Magn. Mater. 145, 243–254 (1995)

    CAS  Article  Google Scholar 

  18. 18.

    E. Koster, Magnetic anisotropy of cobalt-doped gamma ferric oxide. IEEE Trans. Magn. 8, 428–429 (1972)

    Article  Google Scholar 

  19. 19.

    T. Tsuji, K. Ando, K. Naito, Y. Matsui, Coercivity and Mössbauer spectroscopy studies of cobalt-adsorbed γ-Fe2O3. J. Appl. Phys. 69, 4472–4474 (1991)

    CAS  Article  Google Scholar 

  20. 20.

    H. Sun, J. Coey, Y. Otani, D. Hurley, Magnetic properties of a new series of rare-earth iron nitrides: R2Fe17Ny (y approximately 2.6). J. Phys. Condens. Matter 2, 6465 (1990)

    CAS  Article  Google Scholar 

  21. 21.

    Y. Fukumoto, K. Matsumoto, Y. Matsui, Influence of IIA metals (Mg, Ca, Sr, Ba) on the Co modification of γ-Fe2O3 particles. J. Appl. Phys. 69, 4469–4471 (1991)

    CAS  Article  Google Scholar 

  22. 22.

    F. Spada, F. Parker, A. Berkowitz, T. Cox, Hc enhancement of Co-adsorbed γ-Fe2O3 particles via surface treatment with sodium polyphosphate. J. Appl. Phys. 75, 5562–5564 (1994)

    CAS  Article  Google Scholar 

  23. 23.

    A. Ngo, P. Bonville, M. Pileni, Nanoparticles of: synthesis and superparamagnetic properties. Eur. Phys. J. B Condens. Matter Complex Syst. 9, 583–592 (1999)

    CAS  Article  Google Scholar 

  24. 24.

    A. Giri, E. Kirkpatrick, P. Moongkhamklang, S. Majetich, V. Harris, Photomagnetism and structure in cobalt ferrite nanoparticles. Appl. Phys. Lett. 80, 2341–2343 (2002)

    CAS  Article  Google Scholar 

  25. 25.

    S. Singhal, T. Namgyal, S. Bansal, K. Chandra, Effect of Zn substitution on the magnetic properties of cobalt ferrite nano particles prepared via sol–gel route. J. Electromagn. Anal. Appl. 2, 376 (2010)

    CAS  Google Scholar 

  26. 26.

    Zulfiqar, S. Afzal, R. Khan, T. Zeb, M.U. Rahman, Burhanullah, S. Ali, G. Khan, Z. ur Rahman, A. Hussain, Structural, optical, dielectric and magnetic properties of PVP coated magnetite (Fe3O4) nanoparticles. J. Mater. Sci. Mater. Electron. 29, 20040–20050 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    B.D. Cullity, Elements of X-ray Diffraction (Prentice Hall, Upper Saddle River, 2001)

    Google Scholar 

  28. 28.

    M. Ivashchenko, I. Buryk, B. Khudenko, in International Conference on Nanomaterials: Application & Properties (NAP) (IEEE, 2016), pp. 01NTF12-01-01NTF12-04

  29. 29.

    S. Anjum, R. Tufail, K. Rashid, R. Zia, S. Riaz, Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles. J. Magn. Magn. Mater. 432, 198–207 (2017)

    CAS  Article  Google Scholar 

  30. 30.

    C. Pecharromán, T. Gonzalez-Carreno, J.E. Iglesias, The infrared dielectric properties of maghemite, γ-Fe2O3, from reflectance measurement on pressed powders. Phys. Chem. Miner. 22, 21–29 (1995)

    Article  Google Scholar 

  31. 31.

    A.M. Jubb, H.C. Allen, Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl. Mater. Interfaces 2, 2804–2812 (2010)

    CAS  Article  Google Scholar 

  32. 32.

    P. Miles, W. Westphal, A. Von Hippel, Dielectric spectroscopy of ferromagnetic semiconductors. Rev. Mod. Phys. 29, 279 (1957)

    CAS  Article  Google Scholar 

  33. 33.

    N. Rezlescu, E. Rezlescu, Dielectric properties of copper containing ferrites. Phys. Status Solidi a 23, 575–582 (1974)

    CAS  Article  Google Scholar 

  34. 34.

    D. Ravinder, K. Latha, Electrical conductivity of Mn–Zn ferrites. J. Appl. Phys. 75, 6118–6120 (1994)

    CAS  Article  Google Scholar 

  35. 35.

    S. Mehraj, M.S. Ansari, Structural, electrical and magnetic properties of (Fe, Co) co-doped SnO2 diluted magnetic semiconductor nanostructures. Physica E 65, 84–92 (2015)

    CAS  Article  Google Scholar 

  36. 36.

    Y. Yuan, J. Yang, W. Wang, Z. Ye, J. Lu, Structural, dielectric and ferromagnetic behavior of (Zn, Co) co-doped SnO2 nanoparticles. Ceram. Int. 42, 17128–17136 (2016)

    Article  Google Scholar 

  37. 37.

    M. Pollak, Some aspects of non-steady state conduction in bands and hopping processes. In: Proceedings of the International Conference on Physics of Semiconductors (Exeter, 1962), p. 86

  38. 38.

    A.A. El Ata, M. El Nimr, S. Attia, D. El Kony, A. Al-Hammadi, Studies of AC electrical conductivity and initial magnetic permeability of rare-earth-substituted Li–Co ferrites. J. Magn. Magn. Mater. 297, 33–43 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work is done by the support Higher Education Commission of Pakistan (HEC) under START-UP RESEARCH GRANT PROGRAM abbreviated as SRGP with Grant Nos 21-1732/SRGP/R&D/HEC/2017 and 21-1553/SRGP/R&D/HEC/2017, the Fundamental Research Funds for the HEC Pakistan. Higher Education Research Endowment Fund by Khyberpukhtunkhwa (KP) Government Grant No. PMU1-22/HEREF/2014–2015/Vol/IV-.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zulfiqar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hussain, M., Khan, R., Zulfiqar et al. Dielectric and magnetic properties of cobalt doped γ-Fe2O3 nanoparticles. J Mater Sci: Mater Electron 30, 13698–13707 (2019). https://doi.org/10.1007/s10854-019-01747-6

Download citation