Skip to main content
Log in

Growth, structure perfection and characterization of 2-methylimidazolium hydrogen oxalate dihydrate (2MIO) single crystal for NLO applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

2-Methylimidazolium hydrogen oxalate dihydrate (2MIO) organic single crystals of good quality have been grown by slow evaporation solution growth technique (SEST). Structure of the compound was determined by single crystal X-ray diffraction (SCXRD) analysis and it reveals that 2MIO crystallized in monoclinic space group P21/n. The high resolution X-ray diffraction (HRXRD) analysis was carried out to find the crystalline quality. The functional groups of 2MIO have been identified by FT-Raman and FT-IR analyses. The optical UV–Vis–NIR transmittance was recorded and the cut-off edge was found at 314 nm. It is worthwhile to mention that the stability and decomposition of the 2MIO material were established by the analysis of TG/DTG and DSC measurements. The crystal hardness was obtained. The dielectric property studies were carried out at different temperatures. Nonlinear optical susceptibility was determined for 2MIO by Z-scan study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Chi Zhang, Yinglin Song, Xin Wang, Correlations between molecular structures and third-order non-linear optical functions of heterothiometallic clusters: a comparative study. Coord. Chem. Rev. 251, 111 (2007)

    Article  Google Scholar 

  2. P.N. Prasad, D.J. Williams, Introduction to Nonlinear Optical Effect in Molecules and Polymers (Wiley, New York, 1991), pp. 2–10

    Google Scholar 

  3. Marko Spasenović, Markus Betz, Louis Costa, Henry M. van Driel, All-optical coherent control of electrical currents in centrosymmetric semiconductors. Phys. Rev. B 77, 085201 (2008)

    Article  Google Scholar 

  4. D.J. Williams, Nonlinear Optical Properties of Organic and Polymeric Materials, ed. ACS Symposium Series 233, (American Chemical Society, Washington DC, 1983)

  5. S. R. Marder, J. E. Sohn and G. D. Stucky, Materials for Nonlinear Optics: Chemical Perspectives, ed. ACS Symposium Series 455, (American Chemical Society, Washington DC, 1991)

  6. J. Zyss, Molecular Nonlinear Optics, ed. (Academic Press, New York, 1994)

  7. W. Denk, J.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)

    Article  Google Scholar 

  8. C.C. Corredor, Z.L. Huang, K.D. Belfield, A.R. Morales, M.V. Bonder, Photochromic polymer composites for two-photon 3D optical data storage. Chem. Mater. 19, 5165–5173 (2007)

    Article  Google Scholar 

  9. C.Q. Tang, Q. Zheng, H.H. Zhu, L.X. Wang, S.C. Chen, E. Ma, X.Y. Chen, Two-photon absorption and optical power limiting properties of ladder-type tetraphenylene cored chromophores with different terminal groups. J. Mater. Chem. C 1, 1771–1780 (2013)

    Article  Google Scholar 

  10. C.V. Ramana et al., Low-energy Ar+ ion-beam-induced amorphization and chemical modification of potassium titanyl arsenate (001) crystal surfaces. J. Phys. Chem. 111(6), 2702–2708 (2007)

    Google Scholar 

  11. Zhi-Shu Feng et al., SHG in doped GaSe: in crystals. Opt. Express 11, 9979–9985 (2008)

    Google Scholar 

  12. V.V. Atuchin et al., Structural and spectroscopic properties of new noncentrosymmetric self-activated borate Rb3EuB6O12 with B5O10 units. Mater. Des. 140, 488–494 (2018)

    Article  Google Scholar 

  13. T. Baraniraj, P. Philominathan, Growth and characterization of organic nonlinear optical material: benzilic acid. J. Cryst. Growth 311(15), 3849–3854 (2009)

    Article  Google Scholar 

  14. Chengmin Ji, Tianliang Chen, Zhihua Sun, Yan Ge, Wenxiong Lin, Junhua Luo, Qian Shi, Maochun Hong, Bulk crystal growth and characterization of imidazolium l-tartrate (IMLT): a novel organic nonlinear optical material with a high laser-induced damage threshold. CrystEngComm 15, 2157–2162 (2013)

    Article  Google Scholar 

  15. Xiaohua Ma, Ran Liang, Fan Yang, Zhenhua Zhao, Aixin Zhang, Naiheng Song, Qifeng Zhou, Jianping Zhang, Synthesis and properties of novel second-order NLO chromophores containing pyrrole as an auxiliary electron donor. J. Mater. Chem. 18, 1756–1764 (2008)

    Article  Google Scholar 

  16. Xiaohua Ma, Fei Ma, Zhenhua Zhao, Naiheng Song, Jianping Zhang, Synthesis and properties of NLO chromophores with fine-tuned gradient electronic structures. J. Mater. Chem. 19, 2975–2985 (2009)

    Article  Google Scholar 

  17. B. Hachula, M. Pedras, M. Nowak, J. Kusz, D. Pentak, J. Borek, The crystal structure and spectroscopic properties of catena-[2-methylimidazolium bis (μ2-chloro) aquachloromanganese(II)]. J. Serb. Chem. Soc. 76, 235–247 (2011)

    Article  Google Scholar 

  18. P. Moore-Testa, Y. Saint-Jalm, A. Testa, Identification and determination of Imidazole derivatives in cigarette smoke. J. Chromatogr. 290, 263–274 (1984)

    Article  Google Scholar 

  19. T.P. Srinivasan, S. Anandhi, R. Gopalakrishnan, Growth and characterization of 2-methylimidazolium d-tartrate single crystal. J. Cryst. Growth 318, 768–773 (2011)

    Article  Google Scholar 

  20. T. Dhanabal, M. Sethurama, G. Amrithaganesan, Samar K. Das, Spectral, thermal, structural, optical and antimicrobial activity studies on 2-methylimidazolinium picrate—an organic charge transfer complex. J. Mol. Struct. 1045, 112–123 (2013)

    Article  Google Scholar 

  21. P. Nagapandiselvi, C. Baby, R. Gopalakrishnan, Synthesis, growth, structure, mechanical and optical properties of a new semi-organic 2-methyl imidazolium dihydrogen phosphate single crystal. Mater. Res. Bull. 81, 33–42 (2016)

    Article  Google Scholar 

  22. M.B. Diop, L. Diop, L. Plasseraud, H. Cattey, Crystal structure of 2-methyl-1H-imidazol-3-ium hydrogen oxalate dehydrate. Acta Cryst. E72, 1113–1115 (2016). https://doi.org/10.1107/S2056989016011038

    Google Scholar 

  23. G. Bhagavannarayana, R.V. Ananthamurthy, G.C. Budakoti, B. Kumar, K.S. Bart-wal, A study of the effect of annealing on Fe-doped LiNbO3 by HRXRD, XRT and FT-IR. J. Appl. Cryst. 38, 768–771 (2005)

    Article  Google Scholar 

  24. B.W. Batterman, H. Cole, Dynamical diffraction of X rays by perfect crystals. Rev. Mod. Phys. 36, 681–717 (1964)

    Article  Google Scholar 

  25. G. Bhagavannarayana, G. Parthiban, S. Meenakshisundaram, An interesting correlation between crystalline perfection and second harmonic generation efficiency on KCl- and oxalic acid-doped ADP crystals. Cryst. Growth Des. 8(2), 446–451 (2008)

    Article  Google Scholar 

  26. V.K. Rastogi, M.A. Palafox, R.P. Tanwar, L. Mittal, 3,5-Difluorobenzonitrile: ab initio calculations, FTIR and Raman spectra. Spectrochim. Acta 58(9), 1987–2004 (2002)

    Article  Google Scholar 

  27. M. Silverstein, G.C. Basseler, C. Morill, Spectrometric identification of organic compounds (Wiley, New York, 1981)

    Google Scholar 

  28. G. Socrates, Infrared Characteristic Group of Frequencies (Wiley, New York, 1980)

    Google Scholar 

  29. G. Varasanyi, Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives (Wiley, New York, 1974)

    Google Scholar 

  30. M. Govindarajan, S. Periandy, K. Ganesan, J. Chem. 7(2), 457–464 (2010)

    Google Scholar 

  31. G. Varsanyi, Vibrational Spectra of Benzene Derivatives (Academic Press, New York, 1969)

    Google Scholar 

  32. M. Govindarajan, K. Ganasan, S. Periandy, M. Karabacak, G. Varsanyi, Experimental (FT-IR and FT-Raman), electronic structure and DFT studies on 1-methoxynaphthalene. Spectrochim. Acta A 79, 646–653 (2011)

    Article  Google Scholar 

  33. M. Silverstein, F.X. Webster, Spectrometric Identification of Organic Compounds (Wiley, New York, 2003)

    Google Scholar 

  34. J.F. Arenas, J.T. Lopez Navarrete, J.I. Marcos, J.C. Otero, J. Chem. Soc. Faraday Trans. 81, 405–416 (1985)

    Article  Google Scholar 

  35. N. Sundarganesan, S. Ayyappan, H. Umamaheswari, B.D. Joshua, FTIR, FT-Raman spectra and ab initio, DFT vibrational analysis of 2,4-dinitrophenylhydrazine. Spectrochim. Acta A 66, 17–27 (2007)

    Article  Google Scholar 

  36. N.N. Golovnev, M.S. Molokeev, S.N. Vereshchagin, V.V. Atuchin, Calcium and strontium thiobarbiturates with discrete and polymeric structures. J. Coord. Chem. 66(23), 4119–4130 (2013)

    Article  Google Scholar 

  37. R.M. Silverstein, F.X. Webster, D.J. Klemie, Spectrometric Identification of Organic Compounds, 7th edn. (Wiley, New York, 2005)

    Google Scholar 

  38. B.H. Stuart, Infrared Spectroscopy: Fundamental and Applications (Wiley, New York, 2004)

    Book  Google Scholar 

  39. D.N. Sathyanarayana, Vibrational Spectroscopy Theory and Application (New Age International Publishers, New Delhi, 2004)

    Google Scholar 

  40. M. Arivazhagan, S. Jeyavijayan, FTIR and FT-Raman spectra, assignments, ab initio HF and DFT analysis of xanthine. Spectrochim. Acta A 79, 161–168 (2011)

    Article  Google Scholar 

  41. D.L. Vein, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic Press, San Diego, 1991)

    Google Scholar 

  42. N. Nicolay et al., The 5-(isopropylidene)-2-thiobarbituric acid: preparation, crystal structure, thermal stability and IR characterization. J. Mol. Struct. 1068, 216–221 (2014)

    Article  Google Scholar 

  43. N.N. Golovne, M.S. Molokeev, S.N. Vereshchagin, V.V. Atuchin, Synthesis and thermal transformation of a neodymium(III) complex [Nd(HTBA)2(C2H3O2)(H2O)2]·2H2O to non-centrosymmetricorcosulfate Nd2O2SO4. J. Coord. Chem. 68, 1865–1877 (2015)

    Article  Google Scholar 

  44. B. Smith, Infrared Spectral Interpretation, A Systematic Approach (CRC Press, Washington, 1999)

    Google Scholar 

  45. R.M. Silverstein, F.X. Webster, Spectrometric Identification of Organic Compounds, 6th edn. (Wiley, New York, 2002)

    Google Scholar 

  46. N.N. Golovnev, M.S. Molokeev, Alexaner S. Samoilo, V.V. Atuchin, Influence of alkyl substitutions in 1,3-diethyl-2-thiobarbituric acid on the coordination environment in M(H2O)2(1,3-diethyl-2-thiobarbiturate)2 M = Ca2+, Sr2+. J. Coord. Chem. 69(6), 957–965 (2016)

    Article  Google Scholar 

  47. N.N. Golovnev, M.S. Molokeev, M.K. Lesnikov, V.V. Atuchin, First outer-sphere 1,3-diethyl-2-thiobarbituric compounds [M(H2O)6](1,3-diethyl-2-thiobarbiturate)2·2H2O (M = Co2+, Ni2+): crystal structures, spectroscopic and thermal properties. Chem. Phys. Lett. 653(2016), 54–59 (2016)

    Article  Google Scholar 

  48. N.N. Golovnev, L.A. Solovyov, M.K. Lesnikov, S.N. Vereshchagin, V.V. Atuchin, Hydrated and anhydrous cobalt(II) barbiturates: crystal structures, spectroscopic and thermal properties. Inorg. Chim. Acta 467, 39–45 (2017)

    Article  Google Scholar 

  49. J. Tauc, States in the gap. J. Non-Cryst. Solids 8–10, 569–585 (1972)

    Article  Google Scholar 

  50. N. Chopra, A. Mansingh, G.K. Chadha, Electrical, optical and structural properties of amorphous V2O5 TeO2 blown films. J. Non-Cryst. Solids 126, 194–201 (1990)

    Article  Google Scholar 

  51. V.V. Atuchin, L.I. Isaenko, V.G. Kesler, Z.S. Ln, M.S. Molokeev, A.P. Yelisseyev, S.A. Zhurkov, Exploration on anion ordering, optical properties and electronic structure in K3WO3F3 elpasolite. J. Solid State Chem. 187, 159–164 (2012)

    Article  Google Scholar 

  52. V.V. Atuchin et al., Structural, spectroscopic and electronic properties of cubic Go-Rb KTiOF5 oxyfluoride. J. Phys. Chem. C 117, 7269–7278 (2013)

    Article  Google Scholar 

  53. V.V. Atuchin et al., Exploration of structural, thermal, vibrational and spectroscopic properties of new noncentrosymmetric double borate Rb3NdB6O12. Adv. Powder Technol. 28, 1309–1315 (2017)

    Article  Google Scholar 

  54. A. Dev, S. Chakrabarti, S. Kar, S. Chaudhuri, Optical properties of Mg0.05Zn0.95O/SiO2 nanocomposite films prepared by sol–gel technique. J. Nanopart. Res. 7, 195–201 (2005)

    Article  Google Scholar 

  55. S. Banerjee, A. Kumar, Swift heavy ion irradiation induced modifications in the optical band gap and Urbach’s tail in polyaniline nanofibers. Nucl. Instr. Meth. Phys. Res. B 269, 2798–2806 (2011)

    Article  Google Scholar 

  56. N. Sinha, B.K. Sahas, K. Singh, N. Kumar, M.K. Singh, G.C. Gupta, B. Budakoti, Kumar, Solution growth and comparative characterization of L-HFB single crystals. Cryst. Res. Technol. 44, 167–172 (2009)

    Article  Google Scholar 

  57. M.S. Pandian, P. Ramasamy, Conventional slow evaporation and Sankaranarayanan-Ramasamy (SR) method grown diglycine zinc chloride (DGZC) single crystal and its comparative study. J. Cryst. Growth 312, 413–419 (2010)

    Article  Google Scholar 

  58. J.L. Souza, A.F. Santos, L. Polese, S. Crespi Marisa, C.A. Ribeiro, Thermal behavior of the maleic anhydride modified poly(3-hydroxybutyrate). J. Therm. Anal. Calorim. 87, 673–677 (2007)

    Article  Google Scholar 

  59. U. Shuali, S. Yarv, M. Steinberg, M. Muller-Vonmoos, G. Kahr, A. Rub, Thermal analysis of pyridine-treated sepiolite and palygorskite. Clay Miner. 26, 497–506 (1991)

    Article  Google Scholar 

  60. B. Barszcz, J. Masternak, W. Surga, Thermal properties of Ca(II) and Cd(II) complexes of pyridinedicarboxylates correlation with crystal structures. J. Therm. Anal. Calorim. 101, 633–639 (2010)

    Article  Google Scholar 

  61. R. Prasad, Kumar A. Sulaxna, Kinetics of thermal decomposition of iron(III) dicarboxylate complexes. J. Therm. Anal. Calorim. 81, 441–450 (2005)

    Article  Google Scholar 

  62. T. Hatakeyama, Z. Liu, Handbook of Thermal Analysis (Wiley, Chichester, 1998)

    Google Scholar 

  63. P. Gabbot, A practical introduction to differential scanning calorimetry, in Principles and Applications of Thermal Analysis, ed. by P. Gabbot (Blackwell, Oxford, 2008), pp. 1–50

    Chapter  Google Scholar 

  64. K.K. Rao, D.B. Sirdeshmukh, Microhardness and interatomic binding in some cubic crystals. Bull. Mater. Sci. 5, 449–452 (1983)

    Article  Google Scholar 

  65. C. Vesta, R. Uthrakumar, C. Justin Raj, A. Jonie Varjula, J. Mary Linet, S. Jerome Das, Growth, structural and microhardness studies on new semiorganic single crystals of calcium para nitrophenolate dihydrate. J. Mater. Sci. Technol. 23(6), 855–859 (2007)

    Google Scholar 

  66. E. Chacko, J. Mary Linet, S.M. Navis Priya, C. Vesta, B. Milton Boaz, S. Jerome Das, Growth and microhardness studies of mixed crystals of (NH4)2SbF5 − K2SbF5. Indian J. Pure Appl. Phys. 44, 260–263 (2006)

    Google Scholar 

  67. K. Sangwal, M. Hordyjewicz, B.J. Surowska, Microindentation hardness of SrLaAlO4 and SrLaGaO4 single crystals. J Optoelectron. Adv. Mater. 4, 875–882 (2002)

    Google Scholar 

  68. E.M. Onitsch, Microscopia 2, 131–151 (1947)

    Google Scholar 

  69. S. Panchapakesan, K. Subramani, S. Brahadeeswaran, Growth, characterization and quantum chemical studies of an organic single crystal: 3-aminopyridine 4-nitrophenol for opto-electronic applications. J. Mater. Sci. (2016). https://doi.org/10.1007/s10854-016-6247-x

    Google Scholar 

  70. W.A. Wooster, Physical properties and atomic arrangements in crystals. Rep. Progr. Phys. 16, 62 (1953)

    Article  Google Scholar 

  71. L.R. Dalton, Rational design of organic electro-optic materials. J. Phys. 15, 897–934 (2003)

    Google Scholar 

  72. M. Anis, S.S. Hussaini, M.D. Shirsat, G.G. Muley, Mater. Sci. Poland 34, 548–554 (2016)

    Article  Google Scholar 

  73. K.C. Kao, Dielectric Phenomena in Solids (Elsevier Academic Press, San Diego, 2004), pp. 58–59

    Google Scholar 

  74. Chirsto Balarew, Rumen Dhulev, Application of the hard and soft acids and bases concept to explain ligand coordination in double salt structures. J. Solid State Chem. 55, 1–6 (1984)

    Article  Google Scholar 

  75. K. Elangovan, A. Senthil, Growth, structural, spectral, thermal, mechanical, electrical, linear and third order nonlinear optical properties of imidazolium hydrogen maleate single crystal for nonlinear optical applications. Mater. Res. Express 6, 065101 (2019)

    Article  Google Scholar 

  76. M. Sheik-Bahae, A.A. Said, T. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quant. Electron. 26, 760–769 (1990)

    Article  Google Scholar 

  77. E.W. Van Stryland, M. Sheik-Bahae, Z-scan Measurements of Optical Nonlinearities, in Characterization Techniques and Tabulations for Organic Nonlinear Materials, ed. by M.G. Kuzyk, C.W. Dirk (Marcel Dekker Inc, New York, 1998), pp. 655–692

    Google Scholar 

  78. I. Bhattacharyya, S. Priyadarshi, D. Goswami, Molecular structure-property correlations from optical nonlinearity and thermal-relaxation dynamics. Chem. Phys. Lett. 469, 104–109 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Elangovan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elangovan, K., Senthil, A. & Vinitha, G. Growth, structure perfection and characterization of 2-methylimidazolium hydrogen oxalate dihydrate (2MIO) single crystal for NLO applications. J Mater Sci: Mater Electron 30, 13664–13674 (2019). https://doi.org/10.1007/s10854-019-01742-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01742-x

Navigation