Skip to main content

Advertisement

Log in

A universal strategy towards porous carbons with ultrahigh specific surface area for high-performance symmetric supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Porous carbons with ultrahigh specific surface area (> 3000 m2/g) prepared at low KOH/char ratio (e.g. less than 0.5) is of great importance for their future applications, yet this remains a significant challenge due to the uneven dispersion of the activating agent within carbon source. Herein, a universal combination strategy (solid-state reaction at room temperature followed by chemical activation) to prepare ultrahigh surface area porous carbons has been developed. The specific surface area can reach to 3775 m2/g even at a very low KOH/char ratio (0.19), and the morphologies, specific surface and pore size distributions of the products can be simply tuned by the KOH/char ratios. We found the solid-state reaction at room temperature prior to chemical activation is an efficient way to achieve the even dispersion of the activating agent and thus improve the utilization of KOH greatly. As a typical example, the as-obtained EDTA-3 K not only have an ultrahigh specific surface area up to 3614 m2/g, but also deliver a large total pore volume of 2.09 m3/g. Benefited from the ultrahigh specific surface area, hierarchically porous structure and unique morphology, the EDTA-3 K based supercapacitor exhibits excellent capacitive performance in both KOH and Li2SO4 electrolyte. Hence, this study not only exploits a new approach for the synthesis of hierarchically porous carbon materials with ultrahigh specific surface area for electrochemical energy storage applications, but also provides a universal combination strategy to improve the utilization ratio of activating reagent for the producing of porous carbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014)

    Article  Google Scholar 

  2. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015)

    Article  Google Scholar 

  3. Z. Wu, L. Li, J.M. Yan, X.B. Zhang, Materials design and system construction for conventional and new-concept supercapacitors. Adv. Sci. 4(6), 1600382 (2017)

    Article  Google Scholar 

  4. M. Areir, Y. Xu, D. Harrison, J. Fyson, A study of 3D printed flexible supercapacitors onto silicone rubber substrates. J. Mater. Sci. 28, 18254–18261 (2017)

    Google Scholar 

  5. J.X. Liang, Z.C. Xiao, Y. Gao, X.H. Xu, D.B. Kong, M. Wagner, L.J. Zhi, Ionothermal strategy towards template-free hierarchical porous carbons for supercapacitive energy storage. Carbon 143, 487–493 (2019)

    Article  Google Scholar 

  6. L. Sun, Y.M. Zhou, L. Li, H. Zhou, X.Q. Liu, Q.Y. Zhang, B. Gao, Z.Z. Meng, D. Zhou, Y.L. Ma, Facile and green synthesis of 3D honeycomb-like N/S-codoped hierarchically porous carbon materials from bio-protic salt for flexible, temperature-resistant supercapacitors. Appl. Surf. Sci. 467, 382–390 (2019)

    Article  Google Scholar 

  7. F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014)

    Article  Google Scholar 

  8. F.X. Wang, X.W. Wu, X.H. Yuan, Z.C. Liu, Y. Zhang, L.J. Fu, Y.S. Zhu, Q.M. Zhou, Y.P. Wu, W. Huang, Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46, 6816–6854 (2017)

    Article  Google Scholar 

  9. H. Yang, Y. Tang, X. Huang, L.X. Wang, Q.T. Zhang, Activated porous carbon derived from walnut shells with promising material properties for supercapacitors. J. Mater. Sci. 28, 18637–18645 (2017)

    Google Scholar 

  10. K.X. Zou, Y.F. Deng, J.P. Chen, Y.Q. Qian, Y.W. Yang, Y.W. Li, G.H. Chen, Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors. J. Power Sources 378, 579–588 (2018)

    Article  Google Scholar 

  11. L. Jiao, X.X. Pan, Y.L. Xi, J.Z. Li, J.M. Cao, Q. Guo, W. Han, A facile synthesis of self-assembling reduced graphene oxide/cobalt carbonate hydroxide papers for high-performance supercapacitor applications. J. Mater. Sci. 30, 159–166 (2018)

    Google Scholar 

  12. F.Q. Guo, X.C. Jiang, X.L. Li, K.Y. Peng, C.L. Guo, Z.H. Rao, Carbon electrode material from peanut shell by one-step synthesis for high performance supercapacitor. J. Mater. Sci. 30, 159–166 (2018)

    Google Scholar 

  13. D. Wang, L. Xu, J. Nai, X. Bai, T. Sun, Morphology-controllable synthesis of nanocarbons and their application in advanced symmetric supercapacitor in ionic liquid electrolyte. Appl. Surf. Sci. 473, 1014–1023 (2019)

    Article  Google Scholar 

  14. A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006)

    Article  Google Scholar 

  15. Q. Wang, J. Yan, Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 9, 729–762 (2016)

    Article  Google Scholar 

  16. Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 4, 5925–5950 (2016)

    Article  Google Scholar 

  17. C. Prehal, C. Koczwara, N. Jackel, A. Schreiber, M. Burian, H. Amenitsch, M.A. Hartmann, V. Presser, O. Paris, Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering. Nat. Energy 2, 16215 (2017)

    Article  Google Scholar 

  18. D.W. Wang, Y.T. Wang, H.W. Liu, W. Xu, L. Xu, Unusual carbon nanomesh constructed by interconnected carbon nanocages for ionic liquid-based supercapacitor with superior rate capability. Chem. Eng. J. 342, 474–483 (2018)

    Article  Google Scholar 

  19. G.S. Fu, Q. Li, J.L. Ye, J.L. Han, J.Q. Wang, L. Zhai, Y.W. Zhu, Hierarchical porous carbon with high nitrogen content derived from plant waste (pomelo peel) for supercapacitor. J. Mater. Sci. 29, 7707–7717 (2018)

    Google Scholar 

  20. D. Wang, L. Xu, J. Nai, T. Sun, A versatile Co-Activation strategy towards porous carbon nanosheets for high performance ionic liquid based supercapacitor applications. J. Alloys Compd. 786, 109–117 (2019)

    Article  Google Scholar 

  21. J.C. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22, 23710–23725 (2012)

    Article  Google Scholar 

  22. V. Strauss, K. Marsh, M.D. Kowal, M. El-Kady, R.B. Kaner, A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater. 30, 1704449 (2018)

    Article  Google Scholar 

  23. Z.P. Qiu, Y.S. Wang, X. Bi, T. Zhou, J. Zhou, J.P. Zhao, Z.C. Miao, W.M. Yi, P. Fu, S.P. Zhuo, Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. J. Power Sources 376, 82–90 (2018)

    Article  Google Scholar 

  24. J. Pang, W. Zhang, H. Zhang, J. Zhang, H. Zhang, G. Cao, M. Han, Y. Yang, Sustainable nitrogen-containing hierarchical porous carbon spheres derived from sodium lignosulfonate for high-performance supercapacitors. Carbon 132, 280–293 (2018)

    Article  Google Scholar 

  25. M. Sevilla, A.B. Fuertes, A general and facile synthesis strategy towards highly porous carbons: carbonization of organic salts. J. Mater. Chem. A 1, 13738–13741 (2013)

    Article  Google Scholar 

  26. M. Sevilla, A.B. Fuertes, Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano 8, 5069–5078 (2014)

    Article  Google Scholar 

  27. A.B. Fuertes, M. Sevilla, Hierarchical microporous/mesoporous carbon nanosheets for high-performance supercapacitors. ACS Appl. Mater. Interfaces 7, 4344–4353 (2015)

    Article  Google Scholar 

  28. H. Luo, Y. Yang, Y. Sun, D. Chen, X. Zhao, D. Zhang, J. Zhang, Highly nanoporous carbons by single-step organic salt carbonization for high-performance supercapacitors. J. Appl. Electrochem. 45, 839–848 (2015)

    Article  Google Scholar 

  29. X.Y. Chen, D.H. Xie, Z.J. Zhang, C. Cen, Tetraphenylborate-derived hierarchically porous carbons as efficient electrode materials for supercapacitors. J. Power Sources 246, 531–539 (2014)

    Article  Google Scholar 

  30. J. Zhu, D. Xu, W. Qian, J. Zhang, F. Yan, Heteroatom-containing porous carbons derived from ionic liquid-doped alkali organic salts for supercapacitors. Small 12, 1935–1944 (2016)

    Article  Google Scholar 

  31. H. Luo, Y. Yang, X. Zhao, J. Zhang, Y. Chen, 3D sponge-like nanoporous carbons via a facile synthesis for high-performance supercapacitors: direct carbonization of tartrate salt. Electrochim. Acta 169, 13–21 (2015)

    Article  Google Scholar 

  32. W. Yang, W. Yang, F. Ding, L. Sang, Z. Ma, G. Shao, Template-free synthesis of ultrathin porous carbon shell with excellent conductivity for high-rate supercapacitors. Carbon 111, 419–427 (2017)

    Article  Google Scholar 

  33. W.W. Kang, B.P. Lin, G.X. Huang, C.X. Zhang, Y.H. Yao, W.T. Hou, B. Xu, B. Xing, Peanut bran derived hierarchical porous carbon for supercapacitor. J. Mater. Sci. 29, 6361–6368 (2018)

    Google Scholar 

  34. R. Thangavel, A.G. Kannan, R. Ponraj, V. Thangavel, D.-W. Kim, Y.-S. Lee, High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device. J. Power Sources 383, 102–109 (2018)

    Article  Google Scholar 

  35. C. Zhang, X. Zhu, M. Cao, M. Li, N. Li, L. Lai, J. Zhu, D. Wei, Hierarchical porous carbon materials derived from sheep manure for high-capacity supercapacitors. ChemSuschem 9, 932–937 (2016)

    Article  Google Scholar 

  36. J. Wang, Y.L. Xu, B. Ding, Z. Chang, X.G. Zhang, Y. Yamauchi, K.C.W. Wu, Confined self-assembly in two-dimensional interlayer space: monolayered mesoporous carbon nanosheets with in-plane orderly arranged mesopores and a highly graphitized framework. Angew. Chem. Int. Ed. 57, 2894–2898 (2018)

    Article  Google Scholar 

  37. B.B. Wang, D.H. Li, M.W. Tang, H.B. Ma, Y.G. Gui, X. Tian, F.Y. Quan, X.Q. Song, Y.Z. Xia, Alginate-based hierarchical porous carbon aerogel for high-performance supercapacitors. J. Alloys Compd 749, 517–522 (2018)

    Article  Google Scholar 

  38. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9, 1276–1291 (2007)

    Article  Google Scholar 

  39. J.G. Wang, H. Liu, H. Sun, W. Hua, H. Wang, X. Liu, B. Wei, One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 127, 85–92 (2018)

    Article  Google Scholar 

  40. A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. Roy. Soc. Series A 362, 2477–2512 (2004)

    Article  Google Scholar 

  41. D.W. Wang, S.J. Liu, G.L. Fang, G.H. Geng, J.F. Ma, From trash to treasure: direct transformation of onion husks into three-dimensional interconnected porous carbon frameworks for high-performance supercapacitors in organic electrolyte. Electrochim. Acta 216, 405–411 (2016)

    Article  Google Scholar 

  42. X.Y. Xie, X.J. He, H.F. Zhang, F. Wei, N. Xiao, J.S. Qiu, Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors. Chem. Eng. J. 350, 49–56 (2018)

    Article  Google Scholar 

  43. Z. Yang, J. Ren, Z. Zhang, X. Chen, G. Guan, L. Qiu, Y. Zhang, H. Peng, Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 115, 5159–5223 (2015)

    Article  Google Scholar 

  44. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)

    Article  Google Scholar 

  45. H. Xu, C.K. Wu, X.J. Wei, S.Y. Gao, Hierarchically porous carbon materials with controllable proportion of micropore area by dual-activator synthesis for high-performance supercapacitors. J. Mater. Chem. A 6, 15340–15347 (2018)

    Article  Google Scholar 

  46. D.W. Wang, S.J. Liu, L. Jiao, G.L. Fang, G.H. Geng, J.F. Ma, Unconventional mesopore carbon nanomesh prepared through explosione-assisted activation approach: a robust electrode material for ultrafast organic electrolyte supercapacitors. Carbon 119, 30–39 (2017)

    Article  Google Scholar 

  47. R.Y. Yan, M. Antonietti, M. Oschatz, Toward the experimental understanding of the energy storage mechanism and ion dynamics in ionic liquid based supercapacitors. Adv. Energy. Mater. 8, 1800026 (2018)

    Article  Google Scholar 

  48. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313(5794), 1760–1763 (2006)

    Article  Google Scholar 

  49. D.W. Wang, G.L. Fang, T. Xue, J.F. Ma, G.H. Geng, A melt route for the synthesis of activated carbon derived from carton box for high performance symmetric supercapacitor applications. J. Power Sources 307, 401–409 (2016)

    Article  Google Scholar 

  50. D.W. Wang, J.W. Nai, H. Li, L. Xu, Y.T. Wang, A robust strategy for the general synthesis of hierarchical carbons constructed by nanosheets and their application in high performance supercapacitor in ionic liquid electrolyte. Carbon 141, 40–49 (2019)

    Article  Google Scholar 

  51. J.E. Zuliani, S. Tong, C.Q. Jia, D.W. Kirk, Contribution of surface oxygen groups to the measured capacitance of porous carbon supercapacitors. J. Power Sources 395, 271–279 (2018)

    Article  Google Scholar 

  52. C. Young, J.J. Lin, J. Wang, B. Ding, X.G. Zhang, S.M. Alshehri, T. Ahamad, R.R. Salunkhe, S.A. Hossain, J.H. Khan, Y. Ide, J. Kim, J. Henzie, K.C.W. Wu, N. Kobayashi, Y. Yamauchi, Significant effect of pore sizes on energy storage in nanoporous carbon supercapacitors. Chem. Eur. J. 24, 6127–6132 (2018)

    Article  Google Scholar 

  53. J. Zhao, Y.F. Jiang, H. Fan, M. Liu, O. Zhuo, X.Z. Wang, Q. Wu, L.J. Yang, Y.W. Ma, Z. Hu, Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv. Mater. 29, 1604569 (2017)

    Article  Google Scholar 

  54. K. Fic, G. Lota, M. Meller, E. Frackowiak, Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ. Sci. 5, 5842–5850 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial supports from the Scientific Research Foundation of the Higher Education Institutions of Ningxia (Grant No. NGY 2017148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dewei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3029 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Sun, T., Xu, L. et al. A universal strategy towards porous carbons with ultrahigh specific surface area for high-performance symmetric supercapacitor applications. J Mater Sci: Mater Electron 30, 13636–13646 (2019). https://doi.org/10.1007/s10854-019-01733-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01733-y

Navigation