Skip to main content
Log in

Effect of iron oxide on the electrical conductivity of soda-lime silicate glasses by dielectric spectroscopy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A survey of relaxation processes in glasses exhibiting ionic and electronic–ionic conductivity mechanisms is presented. Electrical conductivity and dielectric properties are investigated using complex impedance spectroscopy in a frequency range from 0.1 to 106 Hz and a temperature range from 253 to 423 K. The results reveal that ionic conduction depends on the alkali concentration and ion mobility while electrical conduction is only slightly influenced by alkali ions and a mixed electronic–ionic conduction can occur. The Jonscher’s expression of ac electric conductivity is modified by adding a new term taking into account the displacement current density associated with the dielectric relaxation. The change in the activation energy depends upon the chemical composition indicating a changeover of the predominant conduction mechanism from ionic to polaronic. Quantum mechanical tunneling (QMT) model was suggested to describe the conduction mechanism of alkali-silicate glass G1 where frequency exponent s < 1. However, small polaron tunneling (SPT) model was applied to describe conductivity of semiconductor glass G2 (alkali-silicate glass with iron ions) with s > 1, whose conduction mechanism may be considered in terms of the optical phonon assisted hopping of small polarons between overlapping states. The electrical modulus exhibited relaxation character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Duclot, J.L. Souquet, J. Power Sources 97, 610–615 (2001)

    Article  Google Scholar 

  2. F.H. El-Batal, J. Matter. Sci. 43, 1070–1079 (2008)

    Article  Google Scholar 

  3. A. Ghosh, D. Chakravorty, J. Phys. Cond. Matter 2, 649–660 (1990)

    Article  Google Scholar 

  4. J. Livage, J.P. Jollivet, E. Tronc, J. Non-Cryst Solids 121, 35–39 (1990)

    Article  Google Scholar 

  5. R.A. Montani, A. Lorente, M.A. Vincenzo, Solid State Ion. 130, 91–95 (2000)

    Article  Google Scholar 

  6. G.D.L.K. Jayasinghe, M.A.K.L. Dissanayake, M.A. Careema, J.L. Souquet, Solid State Ion. 93, 291–295 (1997)

    Article  Google Scholar 

  7. A. Langar, N. Sdiri, H. Elhouichet, M. Ferid, Eur. Phys. J. Plus 131, 421–429 (2016)

    Article  Google Scholar 

  8. I. Jlassi, N. Sdiri, H. Elhouichet, M. Ferid, J. Alloys Compd. 645, 125–130 (2015)

    Article  Google Scholar 

  9. N. Nagaraja, T. Sankarappa, M.P. Kumar, J. Non-Cryst Solids 354, 1503–1508 (2008)

    Article  Google Scholar 

  10. L. Murawski, C.H. Chung, J.D. Mackenzie, J. Non-Cryst Solids 32, 91–104 (1979)

    Article  Google Scholar 

  11. M. Chopinet, D. Lizarazu, C. Rocanière, C. R. Chim. 5, 939–949 (2002)

    Article  Google Scholar 

  12. S. Fakhfakh, O. Jbara, M. Belhaj, S. Rondot, D. Mouze, Z. Fakhfakh, J. Appl. Phys. 104, 093704-1–093704-7 (2008)

    Article  Google Scholar 

  13. S. Fakhfakh, O. Jbara, S. Rondot, A. Hadjadj, Z. Fakhfakh, J. Appl. Phys. 108, 093705-1–093705-10 (2010)

    Article  Google Scholar 

  14. H. Lammert, A. Heurer, Phys. Rev. B 72, 214202–214211 (2005)

    Article  Google Scholar 

  15. P. Maass, A. Bunde, M.D. Ingram, Phys. Rev. Lett. 68, 3064–3067 (1992)

    Article  Google Scholar 

  16. M.H. Bhat, M. Ganguli, K.J. Rao, Curr. Sci. 86, 676–691 (2004)

    Google Scholar 

  17. P. Prasad, B.V. Raghavaiah, R. Balaji-Rao, C. Laxmikanth, N. Veeraiah, Solid State Commun. 132, 235–240 (2004)

    Article  Google Scholar 

  18. R.S. Kumar, K. Hariharan, Mater. Chem. Phys. 60, 28–38 (1999)

    Article  Google Scholar 

  19. R. Pereira, C.B. Gozzo, I. Guedes, L.A. Boatner, A.J. Terezo, M.M. Costa, J. Alloys Compd. 597, 79–84 (2014)

    Article  Google Scholar 

  20. P.V. Rao, M.S. Reddy, K.S.V. Sudhakar, N. Veeraiah, Philos. Mag. 88, 1601–1614 (2008)

    Article  Google Scholar 

  21. A. Šantic, Ž. Skoko, A. Gajovic, S.T. Reis, D.E. Day, A. Moguš-Milankovic, J. Non-Cryst Solids 357, 3578–3584 (2011)

    Article  Google Scholar 

  22. K. Srilatha, K.S. Rao, Y. Gandhi, V. Ravikumar, N. Veeraiah, J. Alloys Compd. 507, 391–398 (2010)

    Article  Google Scholar 

  23. H. Hammami, M. Arous, M. Lagache, A. Kallel, J. Alloys Compd. 430, 1–8 (2007)

    Article  Google Scholar 

  24. N. Assoudi, W. Hzez, R. Dhahri, I. Walha, H. Rahmouni, K. Khirouni, E. Dhahri, J. Mater. Sci.: Mater. Electron. 29, 20113–20121 (2018)

    Google Scholar 

  25. R. Vaish, K.B.R. Varma, J. Appl. Phys. 106, 064106-1–064106-7 (2009)

    Google Scholar 

  26. J. Ashok, N. Purnachand, J.S. Kumar, M.S. Reddy, B. Suresh, M.P.F. Graça, N. Veeraiah, J. Alloys Compd. 696, 1260–1268 (2017)

    Article  Google Scholar 

  27. R.J. Barczynski, P. Krol, L. Murawski, J. Non-Cryst Solids 356, 1965–1967 (2010)

    Article  Google Scholar 

  28. J. Kaluzny, M. Kubliha, V. Labas, T. Djouama, M. Poulain, J. Non-Cryst Solids 355, 2003–2005 (2009)

    Article  Google Scholar 

  29. E.A.A. Wahab, M. Abdel-Baki, J. Non-Cryst, Solids 355, 2239–2249 (2009)

    Google Scholar 

  30. O. Mekni, H. Arifa, B. Askri, K. Raouadi, G. Damamme, B. Yangui, J. Appl. Phys. 116, 104104-1–104104-9 (2014)

    Article  Google Scholar 

  31. A.K. Jonscher, J. Mater. Sci. 13, 563–570 (1978)

    Article  Google Scholar 

  32. R.M. Hill, A.K. Jonscher, J. Non-Cryst Solids 32, 53–69 (1979)

    Article  Google Scholar 

  33. N.F. Mott, E.A. Davis, Electron processes non-crystalline materials, vol. 157 (Oxford Univ. Press, Oxford, 1979)

    Google Scholar 

  34. B. Louati, F. Hlel, K. Guidara, J. Alloys Compd. 486, 299–303 (2009)

    Article  Google Scholar 

  35. K. Funke, Solid State Chem. 22, 111–195 (1993)

    Article  Google Scholar 

  36. G. Floudas, Dielectric spectroscopy, in Polymer science: a comprehensive reference, ed. by K. Matyjaszewski, M. Möller (Elsevier, Amsterdam, 2012), pp. 825–845

    Chapter  Google Scholar 

  37. J.C. Dyre, J. Appl. Phys. 64, 2456–2468 (1988)

    Article  Google Scholar 

  38. K. Funke, Solid State Ion. 18–19, 183–190 (1986)

    Article  Google Scholar 

  39. K.H. Mahmoud, F.M. Abdel-Rahim, K. Atef, Y.B. Saddeek, Curr. Appl. Phys. 11, 55–60 (2011)

    Article  Google Scholar 

  40. K.P. Padmasree, D.K. Kanchan, A.R. Kulkarni, Solid State Ion. 177, 475–482 (2006)

    Article  Google Scholar 

  41. C. Weigel, I. Cormier, G. Calas, L. Galoisy, D.T. Bowron, J. Non-Cryst Solids 354, 5378–5385 (2008)

    Article  Google Scholar 

  42. D.B. Sable, P.P. Khirade, S.D. Birajdar, A.A. Pandit, K.M. Jadhav, Glass Phys. Chem 43, 302–312 (2017)

    Article  Google Scholar 

  43. H.H. Qiu, T. It, H. Sakata, Mater. Chem. Phys. 58, 243–248 (1999)

    Article  Google Scholar 

  44. A. Al-shahrani, A. Al-Hajry, M.M. El-Desoky, Phys. Stat. Sol. A 200, 378–387 (2003)

    Article  Google Scholar 

  45. S. Murugavel, C. Vaida, C. Das, S. Asokan, J. Non-Cryst Solids 404, 84–90 (2014)

    Article  Google Scholar 

  46. N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials, 2nd edn. (Clarendon, Oxford, 1971)

    Google Scholar 

  47. F.B. Abdallah, A. Benali, M. Triki, E. Dhahri, M.P.F. Graça, M.A. Valente, Superlattice. Microst. 117, 260–270 (2018)

    Article  Google Scholar 

  48. T. Sankarappa, M.P. Kumar, G.B. Devidas, N. Nagaraja, R. Ramakrishnareddy, J. Mol. Struct. 889, 308–315 (2008)

    Article  Google Scholar 

  49. R. Hisam, A.K. Yahya, H.M. Kamari, Z.A. Talib, R.H.Y. Subban, Mater. Express 6, 149–160 (2016)

    Article  Google Scholar 

  50. I.G. Austin, N.F. Mott, Adv. Phys. 18, 41–102 (1969)

    Article  Google Scholar 

  51. A. Ghosh, Phys. Rev. B 41, 1479–1488 (1990)

    Article  Google Scholar 

  52. I.G. Austin, N.F. Mott, Adv. Phys. 50, 757–812 (2001)

    Article  Google Scholar 

  53. J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, J. Chem. Phys. 119, 2812–2819 (2003)

    Article  Google Scholar 

  54. P. Bonneau, O. Garnier, G. Calvarin, E. Husson, J.R. Gahvarri, A.W. Hewat, A. Morrel, J. Solid State Chem. 91, 350–361 (1991)

    Article  Google Scholar 

  55. J. Jiang, T.J. Zhang, B.S. Zhang, H. Mao, J. Electroceram. 21, 258–262 (2008)

    Article  Google Scholar 

  56. B. Jorcin, M.E. Orazem, N. Pebere, B. Tribollet, Electrochim. Acta 51, 1473–1479 (2006)

    Article  Google Scholar 

  57. S. Komornicki, M. Radecka, M. Rekas, J. Mater. Sci. 12, 11–16 (2001)

    Google Scholar 

  58. M. Cutroni, A. Mandanici, P. Mustarelli, C. Tomasi, Solid State Ion. 154–155, 713–717 (2002)

    Article  Google Scholar 

  59. I. Ahmad, M.J. Akhtar, M.M. Hasan, Mater. Res. Bull. 60, 474–484 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fakhfakh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amara, C.B., Hammami, H. & Fakhfakh, S. Effect of iron oxide on the electrical conductivity of soda-lime silicate glasses by dielectric spectroscopy. J Mater Sci: Mater Electron 30, 13543–13555 (2019). https://doi.org/10.1007/s10854-019-01722-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01722-1

Navigation