Skip to main content
Log in

Resistive switching modification by ultraviolet illumination in amorphous SrO-based resistive random access memory

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The novel amorphous strontium oxide (α-SrO) resistive random access memory (RRAM) device based on the ITO/α-SrO/Pt sandwich-like structure was presented. Photosensitivity to ultraviolet (UV) light for α-SrO based RRAM was investigated. The resistive switching characteristics were affected through the modification of the number of oxygen vacancy by the UV irradiation. Ultraviolet light-assisted oxygen vacancy manipulation in the SrO film is an effect method to adjust device resistive switching behavior. The current conduction mechanism of the SrO-based RRAM device was changed from the Schottky emission mechanism to Poole-Frankel mechanism after the UV light illumination. In order to unveil the stability of the SrO samples after the UV light illumination, the physical models for different switching processes were proposed. Additionally, the improved switching uniformity via UV light irradiation gives physical insight into designing resistive memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, C.S. Hwang, Rep. Prog. Phys. 75, 076502 (2012)

    Article  Google Scholar 

  2. S. Balatti, S. Ambrogio, Z. Wang, S. Sills, A. Calderoni, N. Ramaswamy, D. Ielmini, I.E.E.E. Tran, Electron Devices. 62, 3365–3372 (2015)

    Article  Google Scholar 

  3. Q. Luo, X.X. Xu, H.T. Liu, H.B. Lv, T.C. Gong, S.B. Long, Q. Liu, H.T. Sun, W. Banerjee, L. Li, J.F. Gao, N.D. Lu, M. Liu, Nanoscale 8, 15629 (2016)

    Article  Google Scholar 

  4. R. Liu, X. Ni, J. Lin, J. Mater. Sci. 30, 1001–1008 (2019)

    Google Scholar 

  5. H. Tian, W.T. Mi, H.M. Zhao, M.A. Mohammad, Y. Yang, P.W. Chiub, T.L. Ren, Nanoscale 9, 9275–9283 (2017)

    Article  Google Scholar 

  6. J. Cong, B. Xiao, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22, 864–877 (2014)

    Article  Google Scholar 

  7. K. Likharev, J. Konstantin, Nanoelectron. Optoelectron. 3, 203–230 (2008)

    Article  Google Scholar 

  8. S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450–1453 (1968)

    Article  Google Scholar 

  9. R. Waser, M. Aono, Nat. Mater. 6, 833–840 (2007)

    Article  Google Scholar 

  10. J.J. Yang, D.B. Strukov, D.R. Stewart, Nat. Nanotechnol. 8, 13–24 (2013)

    Article  Google Scholar 

  11. S. Yu, B. Lee, H.S.P. Wong, Functional Metal Oxide Nanostructures (Springer, 2012), pp. 303–327

  12. D. Panda, T.Y. Tseng, Ferroelectrics 471, 23–64 (2014)

    Article  Google Scholar 

  13. C. Pearson, L. Bowen, M.W. Lee, A.L. Fisher, Appl. Phys. Lett. 102, 99-1 (2013)

    Article  Google Scholar 

  14. F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Mater. Sci. Eng., R 83, 1–59 (2014)

    Article  Google Scholar 

  15. M. Lanza, Materials 7, 2155–2182 (2014)

    Article  Google Scholar 

  16. M.C. Wu, W.Y. Jang, C.H. Lin, T.Y. Tseng, Semicond. Sci. Technol. 27, 065010 (2012)

    Article  Google Scholar 

  17. M.R. Baklanov, K. Maex, J. Appl. Phys. 364, 201–215 (2006)

    Google Scholar 

  18. M. Berber, B. Doumi, A. Mokaddem, Y. Mogulkoc, A. Sayede, A. Tadjer, J. Electron. Mater. 47, 1–8 (2017)

    Google Scholar 

  19. C. Noguera, Acta Cryst. 53, 855–856 (2010)

    Google Scholar 

  20. I.S. Elfimov, A. Rusydi, S.I. Csiszar, Z. Hu, H.H. Hsieh, H.J. Lin, C.T. Chen, R. Liang, G.A. Sawateky, Phys. Rev. Lett. 98, 137202 (2007)

    Article  Google Scholar 

  21. H. Asaoka, K. Saiki, A. Koma, H. Yamamoto, Thin Solid Films 369, 273–276 (2000)

    Article  Google Scholar 

  22. J.J. Guo, S.X. Ren, L.Q. Wu, X. Kang, W. Chen, X. Zhao, Appl. Surf. Sci. 434, 1074–1078 (2018)

    Article  Google Scholar 

  23. Y. Yang, S. Choi, W. Lu, Nano Lett. 13, 2908–2915 (2013)

    Article  Google Scholar 

  24. H.Y. Jeong, J.Y. Lee, S.Y. Choi, Adv. Funct. Mater. 20, 3912–3917 (2010)

    Article  Google Scholar 

  25. T. Guo, T. Tan, Z. Liu, Appl. Phys. A 120, 121–125 (2015)

    Article  Google Scholar 

  26. H. Kaczmarek, H. Chaberska, Appl. Surf. Sci. 255, 6729–6735 (2009)

    Article  Google Scholar 

  27. C. Batalli-Cosmovici, K.W. Michel, Chem. Phys. Lett. 16, 77–80 (1972)

    Article  Google Scholar 

  28. K.J. Kim, D.W. Moon, S.H. Nam, W.J. Lee, H.G. Kim, Surf. Interface Anal. 23, 851–857 (1995)

    Article  Google Scholar 

  29. S.Q. Wang, J.W. Mayer, J. Appl. Phys. 64, 4711–4716 (1988)

    Article  Google Scholar 

  30. K.G. Druijf, J.M.M. de Nijs, E. van der Drift, E.H.A. Granneman, P. Balk, J. Appl. Phys. 78, 306–316 (1995)

    Article  Google Scholar 

  31. Q.N. Mao, Z.G. Ji, J.H. Xi, J. Phys. D 43, 395104–395108 (2010)

    Article  Google Scholar 

  32. P. Russo, X. Ming, R. Liang, N.Y. Zhou, Adv. Funct. Mater. 28, 1706230-1–1706230-9 (2018)

    Article  Google Scholar 

  33. G. Niu, P. Calka, M.A.D. Maur, F. Santoni, S. Guha, M. Fraschke, P. Hamoumou, B. Gautier, E. Perez, C. Walczyk, C. Wenger, A.D. Carlo, L. Alff, T. Schroeder, Sci. Rep. 6, 25757 (2016)

    Article  Google Scholar 

  34. Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y.T. Li, L.T. Sun, M. Liu, Adv. Mater. 24, 1774 (2012)

    Article  Google Scholar 

  35. T. Zhang, J. Yin, Y. Xia, W. Zhang, Z. Liu, J. Appl. Phys. 114, 1359–1363 (2013)

    Google Scholar 

  36. C. Chen, C. Song, J. Yang, F. Zeng, F. Pan, Appl. Phys. Lett. 100, 253509–253509-4 (2012)

    Article  Google Scholar 

  37. J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, R.S. Williams, Nanotechnology 21, 339803 (2010)

    Article  Google Scholar 

  38. A.M. Rana, T. Akbar, M. Ismail, E. Ahmad, F. Hussain, I. Talib, M. Imran, K. Mehmood, K. Iqbal, M.Y. Nadeem, Sci. Rep. 7, 39539 (2017)

    Article  Google Scholar 

  39. F.Y. Yuan, N.N. Deng, C.C. Shih, Y.T. Tseng, T.C. Chang, K.C. Chang, M.H. Wang, W.X. Chen, H.X. Zheng, H.Q. Wu, H. Qian, S.M. Sze, Nanoscale Res. Lett. 12, 574 (2017)

    Article  Google Scholar 

  40. J.W. Seo, J.W. Park, K.S. Lim, J.H. Yang, S.J. Kang, Appl. Phys. Lett. 93, 223505 (2008)

    Article  Google Scholar 

  41. C.C. Lin, B.C. Tu, C.H. Lin, T.Y. Tseng, IEEE Electron Device Lett. 27, 725–727 (2006)

    Article  Google Scholar 

  42. M. Ismail, A.M. Rana, I. Talib, T.L. Tsai, U. Chand, E. Ahmed, Y.N. Muhammad, A. Abdul, A.S. Nazar, H. Muhammad, Solid State Commun. 202, 28–34 (2015)

    Article  Google Scholar 

  43. K.H. Chen, K.C. Chang, T.C. Chang, T.M. Tsai, S.P. Liang, T.F. Young, E.S. Yong, M.S. Simon, Nanoscale Res. Lett. 11, 224 (2016)

    Article  Google Scholar 

  44. P.K. Sarkar, S. Bhattacharjee, A. Barman, A. Kanjilal, A. Roy, Nanotechnology 27, 435701 (2016)

    Article  Google Scholar 

  45. D.C. Kim, M.J. Lee, S.E. Ahn, S. Seo, Appl. Phys. Lett. 88, 587 (2006)

    Google Scholar 

  46. Y.Q. Zhuo, Y. Jiang, R. Zhao, L.P. Shi, J. Robertson, IEEE Electron Device Lett. 34, 1130–1132 (2013)

    Article  Google Scholar 

  47. C.C. Shih, K.C. Chang, T.C. Chang, T.M. Tsai, R. Zhang, J.H. Chen, K.H. Chen, T.F. Young, H.L. Chen, J.C. Lou, T.J. Chu, S.Y. Huang, D.H. Bao, S.M. Sze, IEEE Electron Device Lett. 35, 633–635 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. 3102018gxc017) and the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2018JM5059).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingting Tan or Gangqiang Zha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, T., Du, Y., Sun, Y. et al. Resistive switching modification by ultraviolet illumination in amorphous SrO-based resistive random access memory. J Mater Sci: Mater Electron 30, 13445–13453 (2019). https://doi.org/10.1007/s10854-019-01712-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01712-3

Navigation