Skip to main content
Log in

Co effect on the structural, chemical and frequency depended electrical properties of YbFeO3 perovskite oxide compound

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have synthesized YbFe1−xCoxO3 (x = 0, 0.01, 0.05, 0.10) compounds by the conventional solid-state method. Structural and chemical analysis of the synthesized compounds have been carried out by XPS, SEM and EDX techniques. Frequency dependent (1–107 Hz) electrical properties including the loss tangent, real and imaginary part of impedance and resistivity have been examined in wide range temperature (from − 100 to 100 °C with 20 °C step) using Dielectric/Impedance Spectrometer (Novocontrol). The frequency dependent loss tangent plots have showed different dielectric relaxations peaks and the activation energies of the compounds have been calculated from those peaks using Arrhenius relation. The resistivity measurement results revealed that the increasing Co doping ratio decreases the resistivity of the compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.H. Omari, R. Moubah, M. Haddad, Mater. Chem. Phys. 199, 138–143 (2017)

    Article  Google Scholar 

  2. P. Narasak, S. Kanoknan, L. Sukit, J. Appl. Phys. 117, 174108 (2015)

    Article  Google Scholar 

  3. A.A. Yousef, S.A. Mohamad, A.E. Abdelrahman, M.M. Eltayeb, Materials. 10, 469 (2017)

    Article  Google Scholar 

  4. G. Nirmal, J.K. Paul, Phy. Rev. Lett. 113, 127201 (2014)

    Article  Google Scholar 

  5. R. Marcel, Catalysts 7, 154 (2017)

    Article  Google Scholar 

  6. Z. Liang, R. Ran, T. Moses, W. Wei, S. Zongping, Asia-Pac. J. Chem. Eng. 11, 338–369 (2016)

    Article  Google Scholar 

  7. C. Francesco, C. Floriana, T. Francesco, Challenges 8, 5 (2017)

    Article  Google Scholar 

  8. I. Yoshiteru, M. Masami, H. Yuuki, A. Hiromichi, S. Yoshihiko, Sens. Actuators, B 122, 315–320 (2007)

    Article  Google Scholar 

  9. X. Wang, W. Ma, K. Sun, J. Hu, H. Qin, J. Rare Earths 35, 690 (2017)

    Article  Google Scholar 

  10. Z.B. Yan, J.-M. Liu, Ann. Phys. 358, 206–224 (2015)

    Article  Google Scholar 

  11. S. Jaka, S.H. Siti, Z. Na, Z. Wei, Prog. Energy Combust. Sci. 61, 57–77 (2017)

    Article  Google Scholar 

  12. M.A. Ghebouli, T. Chihi, F. Dahmane, B. Ghebouli, M. Fatmi, T. Seddik, A. Abdiche, R. Khenata, Chin. J. Phys. 56, 1515–1524 (2018)

    Article  Google Scholar 

  13. S. Chao, H. Ting, Z. Jinzhong, H. Meijie, L. Yawei, H. Zhigao, C. Junhao, J. Phys. Chem. C 118, 6994–7001 (2014)

    Article  Google Scholar 

  14. Y. Xinge, J.M. Tobin, F. Antonio, Nat. Mater. 15, 383–396 (2016)

    Article  Google Scholar 

  15. M.A. Pena, J.L.G. Fierro, Chem. Rev. 101, 1981–2017 (2001)

    Article  Google Scholar 

  16. F. Antonio, Chem. Mater. 23, 733–758 (2011)

    Article  Google Scholar 

  17. R.S. Roar, H. Markus, C.K. Frederik, J. Polym. Sci. Part B: Polym. Phys. 51, 16–34 (2013)

    Article  Google Scholar 

  18. P.M.D. Michael, F.D. Peter, B.B. Anna, F. Guillaume, K.H. Mark, M.W. Paul, Compos. Part A 56, 280–289 (2014)

    Article  Google Scholar 

  19. L.M. Tammy, L.P. Robert, T.K. Edward, Prog. Org. Coat. 41, 233–238 (2001)

    Article  Google Scholar 

  20. S.Y. Yang, J. Seidel, S.J. Byrnes, P. Shafer, C.-H. Yang, M.D. Rossell, P. Yu, Y.-H. Chu, J.F. Scott, J.W. Ager, L.W. Martin, R. Ramesh, Nat. Nanotechnol. 5, 143–147 (2010)

    Article  Google Scholar 

  21. H. Saburo, M. Yuichi, N. Tatsuya, W. Kenji, A. Ryu, I. Masashi, Chem. Lett. 43, 874–876 (2014)

    Article  Google Scholar 

  22. V.V. Kharton, A.A. Yaremchenko, A.V. Kovalevsky, A.P. Viskup, E.N. Naumovich, P.F. Kerko, J. Membr. Sci. 163, 307–317 (1999)

    Article  Google Scholar 

  23. T. Shanwen, T.S.I. John, Chem. Mater. 16, 4116–4121 (2004)

    Article  Google Scholar 

  24. B. Nagaraj, T. Sawhney, S. Perusse, S. Aggarwal, R. Ramesh, V.S. Kaushik, S. Zafar, R.E. Jones, J.-H. Lee, V. Balu, J. Lee, Appl. Phys. Lett. 74, 21 (1999)

    Article  Google Scholar 

  25. W.F. Jeffrey, Sens. Actuators, B 123, 1169–1179 (2007)

    Article  Google Scholar 

  26. C.W. Mads, G. Mael, J.Z. Hong, I. Jorge, V. Rui, A. Abilio, A.M. Joaquim, K. Jens, Phy. Rev. B. 94, 214103 (2016)

    Article  Google Scholar 

  27. H. Hyeon, K. Donghoon, C. Kanghyun, P. Jucheol, Y.N. Sang, H. Seungyang, Y. Chan-Ho, M.J. Hyun, A.C.S. Appl, Mater. Inter. 10(2), 1846–1853 (2018)

    Article  Google Scholar 

  28. I. Hayato, K. Takuro, U. Yoshiaki, K. Kay, I. Naoshi, M. Shigeo, H. Raphael, J. Pierre-Eumeric, K. Jean-Michel, F. Mamoru, N. Yukio, J. Phys. Soc. Jpn. 81, 024719 (2012)

    Article  Google Scholar 

  29. S. Halder, S. Md Sheikh, B. Ghosh, T.P. Sinha, Ceram. Int. 43, 11097–11108 (2017)

    Article  Google Scholar 

  30. O. Polat, M. Coskun, F.M. Coskun, B.Z. Kurt, Z. Durmus, M. Caglar, A. Turut, Ionics (2019). https://doi.org/10.1007/s11581-019-02934-5

    Google Scholar 

  31. A. Md Mohiddon, A. Kumar, K.L. Yadav, Physica B 395, 1–9 (2007)

    Article  Google Scholar 

  32. Y. Zhonghua, L. Hanxing, L. Yan, W. Zhaohui, S. Zongyang, L. Yang, C. Minghe, Mater. Chem. Phys. 109, 475–481 (2008)

    Article  Google Scholar 

  33. E. Gorbova, V. Maragou, D. Medvedev, A. Demin, P. Tsiakaras, J. Power Sources 181, 207–213 (2008)

    Article  Google Scholar 

  34. P. Zhang, H. Qın, H. Zhang, W. Lü, J. Hu, J. Rare Earths 35(6), 602 (2017)

    Article  Google Scholar 

  35. M. Abbate, F.M.F. Groot, J.C. Fuggle, A. Fujimori, O. Strebel, F. Lopez, M. Domke, G. Kaindl, G.A. Sawatzky, M. Takano, Y. Takeda, H. Eisaki, S. Uchida, Phys. Rev. B. 46, 4511 (1992)

    Article  Google Scholar 

  36. A.M. Nora, P.B. Bibiana, E. Pierre, E.C. Luis, Appl. Surf. Sci. 253, 1489–1493 (2006)

    Article  Google Scholar 

  37. C. Xueyan, L. Peiqing, S. Yan, Y. Mingxue, L. He, L. Xitao, Z. Wei, H. Xintang, Y. Zhiguo, J. Electrochem. Soc. 163(14), F1564–F1571 (2016)

    Article  Google Scholar 

  38. X. Juan, H. Hua, L. Hanxing, Y. Zhonghua, S. Zhe, Z. Lin, X. Qi, D. Jinqiang, C. Minghe, Ceram. Int. 42, 12796–12801 (2016)

    Article  Google Scholar 

  39. A. Pelaiz-Barranco, J.D.S. Guerra, R. Lopez-Noda, E.B. Araujo, J. Phys. D Appl. Phys. 41, 215503 (2008)

    Article  Google Scholar 

  40. S. Gurvinderjit, V.S. Tiwari, P.K. Gupta, J. Appl. Phys. 107, 064103 (2010)

    Article  Google Scholar 

  41. Z. Tian-Fu, T. Xin-Gui, L. Qiu-Xiang, J. Yan-Ping, H. Xian-Xiong, J. Am. Ceram. Soc. 98, 551–558 (2015)

    Article  Google Scholar 

  42. S. Monica, A. Neetu, S. Sujata, K. Rekha, A. Ashish, J. Appl. Phys. 114, 164106 (2013)

    Article  Google Scholar 

  43. P.-F. Cheng, J. Song, Q.-P. Wang, S.-T. Li, J.-Y. Li, K.-N. Wu, J. Alloys Compd. 740, 36–41 (2018)

    Article  Google Scholar 

  44. A. Kumar, B.P. Singh, R.N.P. Choudhary, A.K. Thakur, J. Alloys Compd. 394, 292–302 (2005)

    Article  Google Scholar 

  45. V. Purohit, R. Padhee, R.N.P. Choudhary, Ceram. Int. 44, 3993–3999 (2018)

    Article  Google Scholar 

  46. M. Atif, M. Nadeem, W. Khalid, Z. Ali, Mater. Res. Bull. 107, 171–179 (2018)

    Article  Google Scholar 

  47. D. Szwagierczak, J. Kulawik, K. Witek, Mater. Sci. Semicond. Process. 38, 329–335 (2015)

    Article  Google Scholar 

  48. Y.-M. Li, R.-H. Liao, X.-P. Jiang, Y.-P. Zhang, J. Alloys Compd. 484, 961–965 (2009)

    Article  Google Scholar 

  49. C.S. Prakash, K. Manoj, C. Sandeep, Ceram. Int. 41, 3227–3236 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) through Grant No. 116F025. O. Polat is supported by the ESF under the project CZ.02.2.69/0.0/0.0/17_050/0008462.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Coşkun or O. Polat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1657 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coşkun, M., Polat, O., Coşkun, F.M. et al. Co effect on the structural, chemical and frequency depended electrical properties of YbFeO3 perovskite oxide compound. J Mater Sci: Mater Electron 30, 13336–13346 (2019). https://doi.org/10.1007/s10854-019-01701-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01701-6

Navigation