Skip to main content
Log in

Investigation of electrical and mechanical properties of silver-hexagonal boron nitride/EPDM composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ethylene propylene diene monomer (EPDM) is widely used as the reinforced insulation material for high voltage direct current (HVDC) cable accessories due to its excellent insulation properties, but its field-dependent conductivity is weak. In this paper, the silver particles (Ag) was prepared and filled into EPDM. The nonlinear conductivity characteristics and breakdown characteristics of the Ag/EPDM composites have been investigated. As the filled Ag content increases, the nonlinear conductivity becomes more obvious, with the maximum nonlinear coefficient reaching 2.45, however, the breakdown field strength is degraded seriously, when the Ag content of the composites reaches 0.5 wt%, the characteristic breakdown strength of the Ag/EPDM composites is reduced to 70.5 kV/mm (neat EPDM is 137.1/kV/mm). In order to relieve the severe degradation of breakdown field strength of Ag/EPDM composites, hexagonal boron nitride (BN), with perfect insulation and thermal properties, is introduced into Ag/EPDM composites. The results show that when 10 wt% of BN and 0.5 wt% of Ag are co-doped into EPDM, the characteristic breakdown field strength is 109.7 kV/mm, which increases by 55.6% compared to that of 0.5 wt% Ag/EPDM (70.5 kV/mm). In addition, the mechanical properties of BN/EPDM composites and Ag/BN/EPDM are improved significantly compared with neat EPDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Ghorbani, M. Jeroense, C.O. Olsson, M. Saltzer, IEEE Trans. Power Del. 29, 414 (2014)

    Article  Google Scholar 

  2. G. Mazzanti, M. Marzinotto, Power Engineering, vol. 384 (Wiley-IEEE Press, Hoboken, 2013)

    Google Scholar 

  3. G. Asplund, IEEE Power Eng. Soc. Gen. Meet. 2, 2299 (2004)

    Google Scholar 

  4. X. Zhou, J. Yi, R. Song et al., Energy 35, 4302 (2010)

    Article  Google Scholar 

  5. S. Alam, Y.V. Serdyuk, S.M. Gubanski, IEEE Trans. Dielectr. Electr. Insul. 22, 970 (2015)

    Article  Google Scholar 

  6. L. Lan, Q. Zhong, Y. Yin, X. Li, IEEE Int. Conf. Solid Dielectr. (ICSD) 2013, 444 (2013)

    Article  Google Scholar 

  7. B.X. Du, Z.L. Li, Z.R. Yang, IEEE Trans. Dielectr. Electr. Insul. 23, 3108 (2016)

    Article  Google Scholar 

  8. X. Zhang, E. Gockenbach, IEEE Trans. Dielectr. Electr. Insul. 14, 1183 (2007)

    Article  Google Scholar 

  9. W. Ma, T. Lu, D. Wang, L. Wang, X. Qi, S. Sun, IEEE Trans. Dielectr. Electr. Insul. 19, 1143 (2012)

    Article  Google Scholar 

  10. J.L. He, J.C. Xie, J. Hu, High Volt. Technol. 40, 637 (2014)

    Google Scholar 

  11. M. Pradhan, H. Greijer, G. Eriksson, M. Unge, IEEE Trans. Dielectr. Electr. Insul. 23, 768 (2016)

    Article  Google Scholar 

  12. L. Donzel, F. Greuter, T. Christen, IEEE Trans. Insul. Mag. 27, 18 (2011)

    Article  Google Scholar 

  13. B.X. Du, Z.R. Yang, Z.L. Li, J. Li, IEEE Trans. Dielectr. Electr. Insul. 25, 1080 (2018)

    Article  Google Scholar 

  14. T. Christen, L. Donzel, F. Greuter, IEEE Trans. Electr. Insul. Mag. 26, 47 (2010)

    Article  Google Scholar 

  15. F.H. Kreuger, Industrial High Voltage (Delft University Press, Delft, 1991), p. 151

    Google Scholar 

  16. X. Qi, Z. Zheng, S. Boggs, IEEE Electr. Insul. Mag. 20, 27 (2004)

    Article  Google Scholar 

  17. G. Lupo, V. Tucci, M. Vitelli, Int. Sympos. High Volt. Eng. (ISH) Graz, Austria 7, 7869 (1995)

    Google Scholar 

  18. M.L. Fu, L.A. Dissado, G. Chen, J.C. Fothergill, IEEE Trans. Dielectr. Electr. Insul. 15, 851 (2008)

    Article  Google Scholar 

  19. L. Gressus, F. Valin, M. Henriot, M. Gautier, J.P. Duraud, T. Sudarshan, R.G. Bommakanti, G. Blaise, J. Appl. Phys. 69, 6325 (1991)

    Article  Google Scholar 

  20. X. Wang, M.B. Zheng, X. Chen, Z.R. Peng, K. Wu, S. Liu, J.K. Peng, S.Z. Chen, Int. Conf. Solid Dielectr. Potsdam, Germany 44, 4 (2010)

    Google Scholar 

  21. S. Boggs, J. Hjerrild, J.T. Holboll, M. Henriksen, IEEE Trans. Power Deliv. 16, 456 (2001)

    Article  Google Scholar 

  22. N. Matsuoka, D. Komesu, M. Mori, M. Kozako, M. Hikita, S. Ishibe, IEEE Int. Conf. Prop. Appl. Dielectr. Mater. (ICPADM) 2015, 332 (2015)

    Google Scholar 

  23. X. Yang, X.L. Zhao, J. Hu, J.L. He, IEEE Trans. Dielectr. Electr. Insul. 34, 15 (2018)

    Article  Google Scholar 

  24. D. Fabiani, G.C. Montanari, C. Laurent, G. Teyssedre, P.H.F. Morshuis, R. Bodega, L.A. Dissado, A. Campus, U.H. Nilsson, IEEE Electr. Insul. Mag. 23, 11 (2007)

    Article  Google Scholar 

  25. H. Ghorbani, M. Jeroense, C.O. Olsson, M. Saltzer, IEEE Trans. Power Del. 29, 414 (2014)

    Article  Google Scholar 

  26. W.M. Guo, Y. Wang, R. Zhang, Z.H. Li, IEEE Int. Forum Strateg. Technol. 5, 133 (2011)

    Google Scholar 

  27. Z.H. Yang, P.H. Hu, S.J. Wang, J.W. Zha, Z.C. Guo, Z.M. Dang, IEEE Trans. Dielectr. Electr. Insul. 24, 168 (2017)

    Google Scholar 

  28. X. Yang, P.F. Meng, Z.L. Xiao, Q. Li, J. Hu, J.L. He, IEEE Trans. Dielectr. Electr. Insul. 25, 63 (2018)

    Google Scholar 

  29. P. Han, J.W. Zha, M.S. Zeng, J. Appl. Phys. 122, 195106 (2017)

    Article  Google Scholar 

  30. J. Li, B.X. Du, X.X. Kong, Z.L. Li, IEEE Trans. Dielectr. Electr. Insul. 24, 1566 (2017)

    Article  Google Scholar 

  31. J. Gartner, E. Gockenbach, H. Borsi, IEEE Int. Sympos. Electr. Insul. 1, 202 (1998)

    Google Scholar 

  32. X. Wang, J.K. Nelson, L.S. Schadler, IEEE Dielectr. Electr. Insul. Y01(l7), 1687 (2011)

    Google Scholar 

  33. L.F. Lu, X.J. Cao, S.H. Qi, J. Adhes. Sci. Technol. 31, 1747 (2017)

    Article  Google Scholar 

  34. Q.G. Chi, Y.Y. Hao, T.D. Zhang, C.H. Zhang, Q.G. Zhang, X. Wang, J. Mater. Sci-Mater. El. 29, 19678 (2018)

    Article  Google Scholar 

  35. B. Sonerud, S. Josefsson, K.M. Furuheim, L. Boyer, C. Frohne, J. Pelto, M. Ketonen, O. Harkki, IEEE Int. Conf. Solid Dielectr. (ICSD) 2013, 366–369 (2013)

    Article  Google Scholar 

  36. C. Zhi, Y. Bando, T. Terao, Adv. Funct. Mater. 19, 1857 (2009)

    Article  Google Scholar 

  37. T. Heid, M. Fréchette, E. David, IEEE Trans. Dielectr. Electr. Insul. 22, 1176 (2015)

    Article  Google Scholar 

  38. C.W. Gao, H. Lu, H.Y. Ni, J. Chen, J. Polym. Res. 25, 6 (2018)

    Article  Google Scholar 

  39. X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando, T. Tanaka, Adv. Funct. Mater. 23, 1824 (2013)

    Article  Google Scholar 

  40. Y. Ando, T. Itoh, J. Appl. Phys. 61, 1497 (2010)

    Article  Google Scholar 

  41. P.P. Budenstein, IEEE Trans. Electr. Insul. 3, 225 (1980)

    Article  Google Scholar 

  42. S.B. Luo, J.Y. Yu, S.H. Yu, R. Sun, L. Qiang Cao, W.H. Liao, C.P. Wong, Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201803204

    Google Scholar 

  43. Q. Li, K. Han, M.R. Gadinski, G.Z. Zhang, Q. Wang, Adv. Mater. 26, 6244 (2014)

    Article  Google Scholar 

  44. Z. Li, K. Okamoto, Y. Ohki, T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 17, 653 (2010)

    Article  Google Scholar 

  45. Z.B. Wang, T. Iizuka, M. Kozako, Y. Ohki, T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 18, 1973 (2011)

    Article  Google Scholar 

  46. B. Sonerud, S. Josefsson, K.M. Furuheim, L. Boyer, C. Frohne, J. Pelto, M. Ketonen, O. Härkki, IEEE Int. Conf. Solid Dielectr. Bologna, Italy 2013, 366–369 (2013)

    Google Scholar 

  47. Z.H. Wang, Y.L. Lu, J. Liu, Z.M. Dang, L.Q. Zhang, W.M. Wang, J. Appl. Phys. 119, 1144 (2011)

    Google Scholar 

  48. Y.P. Wu, Q.S. Zhao, S.H. Zhao, L.Q. Zhang, J. Appl. Polym. Sci. 108, 112 (2008)

    Article  Google Scholar 

  49. H. Huang, M. Tian, J. Yang, H. Li, W. Liang, L. Zhang, X. Li, J. Appl. Polym. Sci. 107, 3325 (2008)

    Article  Google Scholar 

  50. Z.H. Wang, Y.L. Lu, J. Liu, Z.M. Dang, L.Q. Zhang, W.M. Wang, Polym. Adv. Technol. 22, 2302 (2011)

    Article  Google Scholar 

  51. W.Y. Zhou, D.M. Yu, C.F. Wang, Q.L. An, S.H. Qi, Polym. Eng. Sci. 48, 1381 (2008)

    Article  Google Scholar 

  52. Z.H. Wang, Y.L. Lu, J. Liu, Z.M. Dang, L.Q. Zhang, W.M. Wang, J. Appl. Polym. Sci. 119, 1144 (2011)

    Article  Google Scholar 

  53. M. Ieda, IEEE Trans. Dielectr. Electr. Insul. 15, 206 (1980)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Frontier Research Fund of Key Laboratory of Engineering Dielectrics and its Application of Ministry of Education (Grant Nos. 2018EDAQY01, 2018EDAQY02). Supported by Heilongjiang Province Postdoctoral Science Foundation, LBH-Z18099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiandong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, Q., Yang, M., Zhang, T. et al. Investigation of electrical and mechanical properties of silver-hexagonal boron nitride/EPDM composites. J Mater Sci: Mater Electron 30, 13321–13329 (2019). https://doi.org/10.1007/s10854-019-01699-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01699-x

Navigation