Skip to main content

Highly sensitive and flexible strain sensors based on natural rubber/graphene foam composites: the role of pore sizes of graphene foam


The flexible strain sensors have drawn widespread consideration because of their features with excellent stretchability, durability and sensitivity. In this work, graphene foam (GF) with three-dimensional (3D) network structure was synthesized by employing the polyurethane (PU) sponges as template, and strain sensors based on the natural rubber (NR)/GF composites were fabricated through a dip-coating method. The effects of pore sizes of GF on the strain sensing performance of sensors were systematically investigated. It was founded that the network structure of GF regulated by the sizes of PU sponges had great influence on the strain sensing performance of sensors. The gauge factors of the sensitivity of NR/GF composites decrease from 1350 to 614 with the increase of the pore sizes of GF in the low strain region. Compared with others, sensor based on NR/GF-15 ppi (mesh number, the number of holes per inch) have the most advantages of high strain sensing sensitivity, intense electrical conductivity and superb signal stability. It can be used to monitor body motion behavior such as finger bending, pronunciation of different words and throat micro-motion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    J.A. Rogers, T. Someya, Y. Huang, Science 327, 5973 (2010)

    Google Scholar 

  2. 2.

    A. Chortos, J. Liu, Z. Bao, Nat. Mater. 15, 9 (2016)

    Google Scholar 

  3. 3.

    T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, K. Hata, Nat. Nanotechnol. 6, 5 (2011)

    Google Scholar 

  4. 4.

    D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J.E. Lee, C. Song, S.J. Kim, D.J. Lee, S.W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C.S. Hwang, N. Lu, T. Hyeon, D.-H. Kim, Nat. Nanotechnol. 9, 5 (2014)

    Google Scholar 

  5. 5.

    M.H. El Eraki, A.M.Y. El Lawindy, H.H. Hassan, W.E. Mahmoud, Polym. Degrad. Stab. 91, 7 (2006)

    Google Scholar 

  6. 6.

    A. Ajovalasit, B. Zuccarello, J. Strain Anal. Eng. Des. 40, 7 (2005)

    Google Scholar 

  7. 7.

    J. Wang, Y. Wu, J. Elastom. Plast. 46, 2 (2014)

    Google Scholar 

  8. 8.

    C.M. Boutry, A. Nguyen, Q.O. Lawal, A. Chortos, S. Rondeau-Gagne, Z. Bao, Adv. Mater. 27, 43 (2015)

    Google Scholar 

  9. 9.

    C. Deng, L. Pan, R. Cui, C. Li, J. Qin, J. Mater. Sci.-Mater. Electron. 28, 4 (2017)

    Google Scholar 

  10. 10.

    H. Kou, L. Zhang, Q. Tan, G. Liu, W. Lv, F. Lu, H. Dong, J. Xiong, Sens. Actuators A 277, 150–156 (2018)

    CAS  Google Scholar 

  11. 11.

    S. Shengbo, L. Lihua, J. Aoqun, D. Qianqian, J. Jianlong, Z. Qiang, Z. Wendong, Nanotechnology 29, 25 (2018)

    Google Scholar 

  12. 12.

    B. Yin, Y. Wen, T. Hong, Z. Xie, G. Yuan, Q. Ji, H. Jia, ACS Appl. Mater. Interfaces 9, 37 (2017)

    Google Scholar 

  13. 13.

    J.S. Kim, S. Hong, D.W. Park, S.E. Shim, Macromol. Res. 18, 6 (2010)

    Google Scholar 

  14. 14.

    H. Hu, L. Zhao, J. Liu, Y. Liu, J. Cheng, J. Luo, Y. Liang, Y. Tao, X. Wang, J. Zhao, Polymer 53, 15 (2012)

    Google Scholar 

  15. 15.

    H. Yang, M. Tian, Q.-X. Jia, J.-H. Shi, L.-Q. Zhang, S.-H. Lim, Z.-Z. Yu, Y.-W. Mai, Acta Mater. 55, 18 (2007)

    Google Scholar 

  16. 16.

    P.F. Zhan, W. Zhai, N. Wang, X.D. Wei, G.Q. Zheng, K. Dai, C.T. Liu, C.Y. Shen, Mater. Lett. 236, 60–63 (2019)

    CAS  Google Scholar 

  17. 17.

    L. Duan, R. D’Hooge, D.M. Spoerk, P. Cornillie, L. Cardon, ACS Appl. Mater. Interfaces 10, 26 (2018)

    Google Scholar 

  18. 18.

    R. Zhang, P. Pan, Q. Dai, X. Yang, Z. Yang, J. Wei, J. Liu, Q. Yuan, J. Mater. Sci.-Mater. Electron. 29, 7 (2018)

    Google Scholar 

  19. 19.

    L. Gan, M. Dong, Y. Han, Y. Xiao, L. Yang, J. Huang, ACS Appl. Mater. Interfaces 10, 21 (2018)

    Google Scholar 

  20. 20.

    S. Ryu, P. Lee, J.B. Chou, R. Xu, R. Zhao, A.J. Hart, S.-G. Kim, ACS Nano 9, 6 (2015)

    Google Scholar 

  21. 21.

    J. Foroughi, G.M. Spinks, S. Aziz, A. Mirabedini, A. Jeiranikhameneh, G.G. Wallace, M.E. Kozlov, R.H. Baughman, ACS Nano 10, 10 (2016)

    Google Scholar 

  22. 22.

    Y. Zheng, Y. Li, Z. Li, Y. Wang, K. Dai, G. Zheng, C. Liu, C. Shen, Compos. Sci. Technol. 139, 17 (2017)

    Google Scholar 

  23. 23.

    R. Ma, J. Lee, D. Choi, H. Moon, S. Baik, Nano Lett. 14, 4 (2014)

    Google Scholar 

  24. 24.

    J. Lee, H. Kwon, J. Seo, S. Shin, J.H. Koo, C. Pang, S. Son, J.H. Kim, Y.H. Jang, D.E. Kim, T. Lee, Adv. Mater. 27, 15 (2015)

    Google Scholar 

  25. 25.

    G. Qu, J. Cheng, X. Li, D. Yuan, P. Chen, X. Chen, B. Wang, H. Peng, Adv. Mater. 28, 19 (2016)

    Google Scholar 

  26. 26.

    Y.J. Yun, W.G. Hong, W.-J. Kim, Y. Jun, B.H. Kim, Adv. Mater. 25, 40 (2013)

    Google Scholar 

  27. 27.

    Y.A. Samad, Y. Li, A. Schiffer, S.M. Alhassan, K. Liao, Small 11, 20 (2015)

    Google Scholar 

  28. 28.

    Y.R. Jeong, H. Park, S.W. Jin, S.Y. Hong, S.-S. Lee, J.S. Ha, Adv. Funct. Mater. 25, 27 (2015)

    Google Scholar 

  29. 29.

    Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.M. Cheng, Nat. Mater. 10, 6 (2011)

    Google Scholar 

  30. 30.

    Y. Tang, Z. Zhao, H. Hu, Y. Liu, X. Wang, S. Zhou, J. Qiu, ACS Appl. Mater. Interfaces 7, 49 (2015)

    Google Scholar 

  31. 31.

    T. Chen, Y. Xue, A.K. Roy, L. Dai, ACS Nano 8, 1 (2014)

    Google Scholar 

  32. 32.

    Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Adv. Mater. 25, 9 (2013)

    CAS  Google Scholar 

  33. 33.

    X. Dong, Y. Cao, J. Wang, M.B. Chan-Park, L. Wang, W. Huang, P. Chen, RSC Adv. 2, 10 (2012)

    Google Scholar 

  34. 34.

    X. Dong, X. Wang, L. Wang, H. Song, H. Zhang, W. Huang, P. Chen, ACS Appl. Mater. Interfaces 4, 6 (2012)

    Google Scholar 

  35. 35.

    X. Du, H.-Y. Liu, Y.-W. Mai, ACS Nano 10, 1 (2016)

    Google Scholar 

  36. 36.

    J. Li, S. Zhao, X. Zeng, W. Huang, Z. Gong, G. Zhang, R. Sun, C.-P. Wong, ACS Appl. Mater. Interfaces 8, 29 (2016)

    Google Scholar 

  37. 37.

    S. Wu, R.B. Ladani, J. Zhang, K. Ghorbani, X. Zhang, A.P. Mouritz, A.J. Kinloch, C.H. Wang, ACS Appl. Mater. Interfaces 8, 37 (2016)

    Google Scholar 

  38. 38.

    Y.A. Samad, Y. Li, S.M. Alhassan, K. Liao, ACS Appl. Mater. Interfaces 7, 17 (2015)

    Google Scholar 

  39. 39.

    Z. Liu, D. Qi, P. Guo, Y. Liu, B. Zhu, H. Yang, Y. Liu, B. Li, C. Zhang, J. Yu, B. Liedberg, X. Chen, Adv. Mater. 27, 40 (2015)

    CAS  Google Scholar 

  40. 40.

    Y. Lin, S. Liu, S. Chen, Y. Wei, X. Dong, L. Liu, J. Mater. Chem. C 4, 26 (2016)

    Google Scholar 

  41. 41.

    Z. Xiang-Wu, P. Yi, Z. Qiang, Y. Xiao-Su, J. Polym. Sci. B 38, 21 (2000)

    Google Scholar 

  42. 42.

    J.J. Park, W.J. Hyun, S.C. Mun, Y.T. Park, O.O. Park, ACS Appl. Mater. Interfaces 7, 11 (2015)

    Google Scholar 

  43. 43.

    Y. Wang, T. Yang, J. Lao, R. Zhang, Y. Zhang, M. Zhu, X. Li, X. Zang, K. Wang, W. Yu, H. Jin, L. Wang, H. Zhu, Nano Res. 8, 5 (2015)

    Google Scholar 

  44. 44.

    Y. Gao, X. Fang, J. Tan, T. Lu, L. Pan, F. Xuan, Nanotechnology 29, 23 (2018)

    Google Scholar 

  45. 45.

    Y. Ding, J. Yang, C.R. Tolle, Z. Zhu, ACS Appl. Mater. Interfaces 10, 18 (2018)

    Google Scholar 

Download references


This work was financially supported by Aeronautical Science Foundation of China (Grant No. 2016ZF9009), Jiangsu Province Key Project (Grant No. BE2015158) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information




HJ, JW and BY conceived the experiments. HJ supervised the project. JW, WZ, QY and BY conducted the experiments. JW, WZ, QY and BY analyzed the data and cowrote the paper. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Hongbing Jia.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 410 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, W., Yin, Q. et al. Highly sensitive and flexible strain sensors based on natural rubber/graphene foam composites: the role of pore sizes of graphene foam. J Mater Sci: Mater Electron 31, 125–133 (2020).

Download citation