Skip to main content
Log in

Preparation of AlSb film by screen printing and sintering method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Aluminum antimonide (AlSb) is a potential absorber for high efficiency solar cells. In this work, using the commercially available micro powders of elemental Al and Sb, polycrystalline AlSb films were successfully synthesized by utilizing a simple screen printing and sintering method for the first time. The sintering parameters were optimized to be 680 ~ 760 °C for 3 h to fabricate high quality films. Structural, optical, morphological, elemental and electrical properties of the as-prepared films were systematically investigated. The as-prepared films possessed zinc blende structure of F-43 m (216) space group and their lattice parameters increased with increasing sintering temperature. Interestingly, both Brillouin scattering peaks and Raman scattering peaks were observed in the Raman spectra. Two different kinds of electron–hole recombination were detected in the Photoluminescence (PL) spectra and they were further analyzed by a multi-peaks Gaussian fitting. These results showed that the film sintered at 720 °C possessed the optimal crystallinity. This film was highly developed with nearly stoichiometric atomic ratio of 42.19: 40.42 (Al: Sb). Moreover, its conduction activation energy was estimated to be 0.06 eV. Finally, a simple reaction model of Al-Sb system was proposed to explain the reaction mechanism. AlSb phase started to form at the solid–solid reaction stage, while most of it was generated at the liquid–liquid reaction stage. The reaction rate was also greatly quickened in this stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.H. Yee, S.P. Swierkowski, J.W. Sherohman, IEEE Trans. Nucl. Sci. 24, 1962–1967 (1977)

    Article  Google Scholar 

  2. J.J. Wysocki, P. Rappaport, J. Appl. Phys. 31, 571–578 (1960)

    Article  Google Scholar 

  3. X. Liu, J. Liu, K. Yang, S. He, H. Lu, B. Li, G. Zeng, J. Zhang, W. Li, L. Wu, Mater. Sci. Semicond. Process. 81, 102–107 (2018)

    Article  Google Scholar 

  4. J.E. Johnson, J. Appl. Phys. 36, 3193–3195 (1965)

    Article  Google Scholar 

  5. H. Song, L. Wu, J. Zheng, L. Feng, Z. Lei, J. Zhang, Int. J. Mod. Phys. B 25, 1747–1755 (2011)

    Article  Google Scholar 

  6. J. He, L. Wu, L. Feng, J. Zheng, J. Zhang, W. Li, B. Li, Y. Cai, Sol. Energy Mater. Sol. Cells 95, 369–372 (2011)

    Article  Google Scholar 

  7. W. Chen, L. Feng, Z. Lei, J. Zhang, F. Yao, W. Cai, Y. Cai, W. Li, L. Wu, B. Li, J.-G. Zheng, Int. J. Mod. Phys. B 22, 2275–2283 (2008)

    Article  Google Scholar 

  8. P. Tang, B. Li, L. Feng, L. Wu, J. Zhang, W. Li, G. Zeng, W. Wang, C. Liu, J. Alloy. Compd. 692, 22–25 (2017)

    Article  Google Scholar 

  9. K. Yang, B. Li, J. Zhang, W. Li, L. Wu, G. Zeng, W. Wang, C. Liu, L. Feng, Superlattices Microstruct. 102, 1–6 (2017)

    Article  Google Scholar 

  10. T. Gandhi, K.S. Raja, M. Misra, Electrochim. Acta 53, 7331–7337 (2008)

    Article  Google Scholar 

  11. H. Matsumoto, K. Kuribayashi, H. Uda, Y. Komatsu, A. Nakano, S. Ikegami, Solar Cells 11, 367–373 (1984)

    Article  Google Scholar 

  12. T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada, M. Konagai, Phys. Status Solidi 203, 2593–2597 (2010)

    Article  Google Scholar 

  13. Z. Zhou, Y. Wang, D. Xu, Y. Zhang, Sol. Energy Mater. Sol. Cells 94, 2042–2045 (2010)

    Article  Google Scholar 

  14. C. Wichasilp, T. Thongtem, S. Thongtem, Curr. Appl. Phys. 11, 1031–1034 (2011)

    Article  Google Scholar 

  15. Y.S. Raptis, E. Anastassakis, G. Kanellis, Phys. Rev. B 46, 15801–15811 (1992)

    Article  Google Scholar 

  16. T. Azuhata, T. Sota, K. Suzuki, J. Phys.: Condens. Matter 7, 1949 (1995)

    Google Scholar 

  17. K. Cheewajaroen, P. Saengkaew, S. Sanorpim, V. Yordsri, C. Thanachayanont, N. Nuntawong, W. Rathanasakulthong, Mater. Sci. Semicond. Process. 88, 224–233 (2018)

    Article  Google Scholar 

  18. G. Hofmann, C.T. Lin, E. Schonherr, J. Weber, J. Appl. Phys. 67, 1478–1482 (1990)

    Article  Google Scholar 

  19. G. Hofmann, C.T. Lin, E. Schönherr, J. Weber, Appl. Phys. A 57, 315–317 (1993)

    Article  Google Scholar 

  20. Y. Wang, Y. Huang, A.Y.S. Lee, C.F. Wang, H. Gong, J. Alloy. Compd. 539, 237–241 (2012)

    Article  Google Scholar 

  21. R.E. Honig, RCA Rev. 30, 285–305 (1969)

    Google Scholar 

  22. P. Erhart, D. Åberg, V. Lordi, Phys. Rev. B. 81, 195216 (2010)

    Article  Google Scholar 

  23. Z. Liu, D.D.L. Chung, J. Electron. Mater. 33, 1316–1325 (2004)

    Article  Google Scholar 

  24. N. Grado, L.S. Castleman, Metall. Mater. Trans. B 2, 3277–3282 (1971)

    Article  Google Scholar 

  25. C.Y. Ang, L.L. Lacy, Metall. Trans. A 10, 519–528 (1979)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China under Grant No. 61574094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, R., Yan, H., Pei, Y. et al. Preparation of AlSb film by screen printing and sintering method. J Mater Sci: Mater Electron 30, 13290–13296 (2019). https://doi.org/10.1007/s10854-019-01692-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01692-4

Navigation