Skip to main content
Log in

A comparative study of the isoelectronic Cd and Hg substitution in EDTA-capped ZnS nanocrystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research, the surface capped pure ZnS nanoparticles, as well as the Cd- and Hg-doped ones were synthesized via a green ultrasonic-assisted co-precipitation route. The products were characterized by X-ray diffraction, scanning and transmission electron microscopies, Fourier transform infrared, UV–Vis and photoluminescence spectroscopies. The results showed that the synthesized spherical-like nanoparticles are single-phased and well-dispersed with diameters of about 3 nm. They were crystallized in a cubic zincblende structure whose lattice constants increase on doping due to the larger ionic radii of the dopants. The Cd/Hg substitution results in slightly less microstrain and so rather smaller particles. The studied nanoparticles are direct band gap materials whose band gap values vary with Cd/Hg doping from 4.31 eV for ZnS to 3.94/4.40 eV as a result of the competition between the quantum size effect and the composition effect. The effect of the isoelectronic Cd and Hg doping is also revealed as the weakening of the blue photoluminescence band around 430 nm originated from the defect states in ZnS matrix, and the appearance of a red excitonic emission at 640 nm. It was found that in these nanoparticles being smaller than Bohr dimension, the particle size is a determinative parameter for governing the efficiency of the radiative emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.D. Yoffe, Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys. 50, 1–208 (2001)

    Article  Google Scholar 

  2. W.L. Davidson, X-ray diffraction evidence for ZnS formation in zinc activated rubber vulcanizates. Phys. Rev. 74, 116–117 (1948)

    Article  Google Scholar 

  3. W. Liu, Low temperature synthesis of hexagonal phase ZnS nanocrystals by thermolysis of an air-stable single-source molecular precursor in air. Mater. Lett. 60, 551–554 (2006)

    Article  Google Scholar 

  4. P. Chansri, S. Arunrungrusmi, T. Yuji, N. Mungkung, An analysis of ZnS: Cu phosphor layer thickness influence on electroluminescence device performances (J. Photoenergy, Int, 2017). https://doi.org/10.1155/2017/6752984

    Google Scholar 

  5. R.H. Castillo, M. Acosta, I. Riech, G. Santana-Rodríguez, J. Mendez-Gamboa, C. Acosta, M. Zambrano, Study of ZnS/CdS structures for solar cells applications. Optik 148, 95–100 (2017)

    Article  Google Scholar 

  6. M.D. Regulacio, K.Y. Win, S.L. Lo, S.-Y. Zhang, X. Zhang, S. Wang, M.-Y. Han, Y. Zhen, Aqueous synthesis of highly luminescent AgInS2-ZnS quantum dots and their biological applications. Nanoscale 5, 2322–2327 (2013)

    Article  Google Scholar 

  7. H.S. Choi, Y. Kim, J.C. Park, M.H. Oh, D.Y. Jeon, Y.S. Nam, Highly luminescent, off-stoichiometric CuxInyS2/ZnS quantum dots for near-infrared fluorescence bio-imaging. RSC Adv. 5, 43449–43455 (2015)

    Article  Google Scholar 

  8. S. Sahare, S.J. Dhoble, P. Singh, M. Ramrakhiani, Fabrication of ZnS: cu/PVA nanocomposite electroluminescence devices for flat panel displays. Adv. Mater. Lett. 4, 169–173 (2013)

    Article  Google Scholar 

  9. Z. Zhang, K. Wang, K. Zheng, S. Deng, N. Xu, J. Chen, A flat panel photodetector formed by a ZnS photoconductor and ZnO nanowire field emitters achieving high responsivity from ultraviolet to visible light for indirect-conversion X-Ray imaging. J. Lightwave Technol. 36, 5010–5015 (2018)

    Article  Google Scholar 

  10. H.R. Azimi, M. Ghoranneviss, S.M. Elahi, R. Yousefi, Photovoltaic and UV detector applications of ZnS/rGO nanocomposites synthesized by a green Method. Ceram. Int. 42, 14094–14099 (2016)

    Article  Google Scholar 

  11. A.F. Mohammed, W.R. Salah, Synthesis of ZnS quantum dots for QDs-LED hybrid device with different cathode materials (IOP Publishing Ltd, Bristol, 2018)

    Book  Google Scholar 

  12. S. Vasilyev, I. Moskalev, V. Smolski, J. Peppers, M. Mirov, V. Fedorov, D. Martyshkin, S. Mirov, V. Gapontsev, Octave-spanning Cr:ZnS femtosecond laser with intrinsic nonlinear interferometry. Optica 6, 126–127 (2019)

    Article  Google Scholar 

  13. D. Okazaki, H. Arai, A. Anisimov, E.I. Kauppinen, S. Chiashi, S. Maruyama, N. Saito, S. Ashihara, Self-starting mode-locked Cr:ZnS laser using single-walled carbon nanotubes with resonant absorption at 2.4 μm. Opt Lett 44(7), 1750–1753 (2019)

    Article  Google Scholar 

  14. H.Y. Huang, C.H. Chuang, C.K. Shu, Y.C. Pan, W.H. Lee, W.K. Chen, W.H. Chen, M.C. Lee, Photoluminescence and photoluminescence excitation studies of as-grown and P-implanted GaN: on the nature of yellow luminescence. Appl. Phys. Lett. 80, 3349–3351 (2002)

    Article  Google Scholar 

  15. S.L. Chen, W.M. Chen, I.A. Buyanova, Magneto-optical properties and recombination dynamics of isoelectronic boundexcitons in ZnO. AIP Conf. Proc. 1583, 186–189 (2014)

    Article  Google Scholar 

  16. R. Intartaglia, T. Taliercio, P. Valvin, B. Gil, T. Bretagnon, P. Lefebvre, Isoelectronic traps in heavily doped GaAs:(In, N). Phys. Rev. B 68(23), 235202 (2003)

    Article  Google Scholar 

  17. J.J. Hopfield, D.G. Thomas, R.T. Lynch, Isoelectronic donors and acceptors. Phys. Rev. Lett. 17, 312–315 (1966)

    Article  Google Scholar 

  18. Th Agne, M. Dietrich, J. Hamann, S. Lany, H. Wolf, Th Wichert, ISOLDE collaboration, optical properties of the isoelectronic trap Hg in ZnO. Appl. Phys. Lett. 82, 3448–3450 (2003)

    Article  Google Scholar 

  19. P. Iranmanesh, S. Saeednia, N. Khorasanipoor, Tunable properties of cadmium substituted ZnS nanocrystals. Mater. Sci. Semicon. Proc. 68, 193–198 (2017)

    Article  Google Scholar 

  20. Th Agne, M. Dietrich, J. Hamann, S. Lany, H. Wolf, Th Wichert, ISOLDE collaboration, optical properties of the isoelectronic trap Hg in ZnO. Appl. Phys. Lett. 82, 3448–3450 (2003)

    Article  Google Scholar 

  21. S.M. Zhou, Near UV photoluminescence of Hg-doped GaN nanowires. Physica E 33, 394–397 (2006)

    Article  Google Scholar 

  22. A. Pradhan, R.C. Jones, D. Caruntu, C.J. O’Connor, M.A. Tarr, Gold-magnetite nanocomposite materials formed via sonochemical methods. Ultrason. Sonochem. 15, 891–897 (2008)

    Article  Google Scholar 

  23. U. Waggon, Optical properties of semiconductor quantum dots (Springer-Verlag, Berlin, 1996), p. 250

    Google Scholar 

  24. J.-W. Lee, S.-M. Lee, Y.-D. Huh, C.-S. Hwang, EDTA surface capped water-dispersible ZnSe and ZnS: Mn nanocrystals. Bull. Korean Chem. Soc. 31, 1997–2002 (2010)

    Article  Google Scholar 

  25. B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3rd edn. (Prentice-Hall, New York, 2001)

    Google Scholar 

  26. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102–113 (1978)

    Article  Google Scholar 

  27. A.S. Hassanien, A.A. Akl, A.H. Sáaedi, Synthesis, crystallography, microstructure, crystal defects, and morphology of BixZn1-xO nanoparticles prepared by sol-gel technique. CrystEngComm 20, 1716–1730 (2018)

    Article  Google Scholar 

  28. N.W. Ashcroft, N.D. Mermin, Solid state physics (Holt, Rinehart and Winston, New York, 1976), p. 628

    Google Scholar 

  29. Börnstein L (1987) Numerical data and functional relationships in science and technology. New Series. Group III: crystal and solid state physics. Vol. 22: semiconductors. Subvolume a: Intrinsic properties of group IV elements and III‐V, II‐VI and I‐VII compounds. Madelun O (ed), Springer, Berlin, p 168

  30. C.A. Klein, R.N. Donadio, Infrared-active phonons in cubic zinc sulfide. J. Appl. Phys. 51, 797–800 (1980)

    Article  Google Scholar 

  31. Socrates G (2004) Infrared and Raman characteristic group frequencies: tables and charts. 3rd (ed). John Wiley & Sons Ltd, New Jersey, p 95–97

  32. P.R. Collins, W.J. Fredericks, Note on the absorption spectrum of KBr: Cd 2+. Phys. Stat. Sol. (b) 134, K67–K70 (1986)

    Article  Google Scholar 

  33. L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, V. Kshnyakin, T. Khalyavka, A comparative study of optical absorption and photocatalytic properties of nanocrystalline single-phase anatase and rutile TiO2 doped with transition metal cations. J. Solid State Chem. 198, 511–519 (2013)

    Article  Google Scholar 

  34. D.C. Onwudiwe, P.A. Ajibade, Zn(II), Cd(II) and Hg(II) complexes of N-methyl-N-phenyl dithiocarbamate as single-source precursors for the synthesis of metal sulfide nanoparticles. Mater. Lett. 65, 3258–3261 (2011)

    Article  Google Scholar 

  35. U.S. Senapati, D. Sarkar, Synthesis and characterization of biopolymer protected zinc sulphide nanoparticles. Superlattice. Microst. 85, 722–733 (2015)

    Article  Google Scholar 

  36. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bul. 3, 37–46 (1968)

    Article  Google Scholar 

  37. A.S. Hassanien, A.A. Akl, Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures. Appl. Phys. A 233(1–4), 307–319 (2018)

    Google Scholar 

  38. G. Murugadoss, Synthesis and photoluminescence properties of zinc sulfide nanoparticles doped with copper using effective surfactants. Particuology 11, 566–573 (2013)

    Article  Google Scholar 

  39. D.C. Onwudiwe, P.A. Ajibade, ZnS, CdS and HgS nanoparticles via alkyl-phenyl dithiocarbamate complexes as single source precursors. Int. J. Mol. Sci. 12, 5538–5551 (2011)

    Article  Google Scholar 

  40. Y. Zhi-hao, Y. Wei, J. Jun-hui, Z. Li-de, Optical absorption red shift of capped ZnFe2O4 nanoparticle. Chin. Phys. Lett. 15(7), 535–536 (1998)

    Article  Google Scholar 

  41. H.R. Azimi, M. Ghoranneviss, S.M. Elahi, R. Yousefi, Enhancing photovoltaic performance of PbS/rGO nanocomposites: the role of buffer layer of ZnS/rGO nanocomposites. Ceram. Int. 43, 128–132 (2017)

    Article  Google Scholar 

  42. B. Ray, II-VI Compounds (Pergamon, Oxford, 1969), p. 153

    Google Scholar 

  43. H. Safardoust-Hojaghan, M. Shakouri-Arani, M. Salavati-Niasari, Structural and spectroscopic characterization of HgS nanoparticles prepared via simple microwave approach in presence of novel sulfuring agent. Trans. Nonferrous Met. Soc. China 26, 759–766 (2016)

    Article  Google Scholar 

  44. J.Z. Mbese, P.A. Ajibade, Synthesis, structural and optical properties of ZnS, CdS and HgS nanoparticles from dithiocarbamato single molecule precursors. J. Sulfur Chem. 35(4), 438–449 (2014)

    Article  Google Scholar 

  45. B.K. Patel, S. Rath, S.N. Sarangi, S.N. Sahu, HgS nanoparticles: structure and optical properties. Appl. Phys. A 86, 447–450 (2007)

    Article  Google Scholar 

  46. A. Marikani, Materials science (Dehli, PHI Learning Pvt. Ltd, 2017), p. 463

    Google Scholar 

  47. L.E. Brus, Electron–electron and electronhole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984)

    Article  Google Scholar 

  48. J.E. Bernard, A. Zunger, Optical bowing in zinc chalcogenide semiconductor alloys. Phys. Rev. B 34, 5992–5995 (1986)

    Article  Google Scholar 

  49. S. Larach, R.E. Shrader, C.F. Stocker, Anomalous variation of band gap with composition in zinc sulfo- and seleno-tellurides. Phys. Rev. 108, 587–589 (1957)

    Article  Google Scholar 

  50. J.U. Kim, M.H. Lee, H. Yang, Synthesis of Zn1 − xCdxS:Mn/ZnS quantum dots and their application to light-emitting diodes. Nanotechnology 19(46), 465605 (2008)

    Article  Google Scholar 

  51. V. Ramasamy, K. Praba, G. Murugadoss, Synthesis and study of optical properties of transition metals doped ZnS nanoparticles. Spectrochim. Acta. A 96, 963–971 (2012)

    Article  Google Scholar 

  52. X. Zeng, J. Zhang, F. Huang, Optical and magnetic properties of Cr-doped ZnS nanocrystallites. J. Appl. Phys. 111(12), 123525 (2012)

    Article  Google Scholar 

  53. Y. Chang, M. Wang, X. Chen, S. Ni, W. Qiang, Field emission and photoluminescence characteristics of ZnS nanowires via vapor phase growth. Solid State Commun. 142, 295–298 (2007)

    Article  Google Scholar 

  54. M. Sookhakian, Y.M. Amin, W.J. Basirun, M.T. Tajabadi, N. Kamarulzaman, Synthesis, structural, and optical properties of type-II ZnO–ZnS core–shell nanostructure. J. Lumin. 145, 244–252 (2014)

    Article  Google Scholar 

  55. W.G. Becker, A.J. Bard, Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions. J. Phys. Chem. 87, 4888–4893 (1983)

    Article  Google Scholar 

  56. G. Murugadoss, B. Rajamannan, V. Ramasamy, Synthesis, characterization and optical properties of water-soluble ZnS:Mn2+ nanoparticles. J. Luminescence 130, 2032–2039 (2010)

    Article  Google Scholar 

  57. A.A. Bol, A. Meijerink, Luminescence quantum efficiency of nanocrystalline ZnS:Mn2+. 2. Enhancement by UV irradiation. J. Phys. Chem. B 105(42), 10203–10209 (2001)

    Article  Google Scholar 

  58. Y. Jiang, X.M. Meng, J. Liu, Z.Y. Xie, C.S. Lee, S.T. Lee, Hydrogen-assisted thermal evaporation synthesis of ZnS nanoribbons on a large scale. Adv. Mater. 15, 323–327 (2003)

    Article  Google Scholar 

  59. R.K. Chandrakar, R.N. Baghel, V.K. Chandra, B.P. Chandra, Synthesis, characterization and photoluminescence studies of Mn doped ZnS nanoparticles. Superlattices Microstruct. 86, 256–269 (2015)

    Article  Google Scholar 

  60. A.A. Bol, J. Ferwerda, J.A. Bergwerff, A. Meijerink, Luminescence of nanocrystalline ZnS:Cu2+. J. Lumin. 99, 325–334 (2002)

    Article  Google Scholar 

  61. D. Denzler, M. Olschewski, K. Sattler, Luminescence studies of localized gap states in colloidal ZnS nanocrystals. J. Appl. Phys. 84, 2841–2845 (1998)

    Article  Google Scholar 

  62. T.T.Q. Hoa, N.D. The, S. Mcvitie, N.H. Nan, L.V. Vu, T.D. Canh, N.N. Long, Optical properties of Mn- doped ZnS semiconductor nanoclusters synthesized by a hydrothermal process. Opt. Mater. 33, 308–314 (2011)

    Article  Google Scholar 

  63. K.M. Mullaugh, G.W.I.I.I. Luther, Spectroscopic determination of the size of cadmium sulfide nanoparticles formed under environmentally relevant conditions. J. Environ. Monit. 12, 890–897 (2010)

    Article  Google Scholar 

  64. N. Moloto, N. Revaprasadu, M.J. Moloto, P. O’Brien, J. Raftery, N, N’-diisopropylthiourea and N, N’-dicyclohexylthiourea zinc(II) complexes as precursors for the synthesis of ZnS nanoparticles. S. Afr. J. Sci. 105, 258–263 (2009)

    Google Scholar 

  65. K. Sreejith, K.S. Mali, C.G.S. Pillai, A simple one step method for the synthesis of hexagonal Cd1 -xZnxS (x = 0–0.75). Mater. Lett. 62, 95–99 (2008)

    Article  Google Scholar 

  66. S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Panday, Structural, optical and photoconductivity characteristics of manganese doped cadmium sulfide nanoparticles synthesized by co-precipitation method. J. Alloys Compd. 513, 118–124 (2012)

    Article  Google Scholar 

  67. A. Prudnikau, M. Artemyev, M. Molinari, M. Troyon, A. Sukhanova, I. Nabiev, A.V. Baranov, S.A. Cherevkov, A.V. Fedorov, Chemical substitution of Cd ions by Hg in CdSe nanorods and nanodots: spectroscopic and structural examination. Mater. Sci. Eng. 177, 744–749 (2012)

    Article  Google Scholar 

  68. Prudnikau A, Artemyev M (2011) Optical properties of cadmium selenide nanocrystals with cadmium substitution by mercury Proc. Phys. Chem. Applications Nanostruct. https://doi.org/10.1142/9789814343909_0043

  69. D.W. Oxtoby, H.P. Gillis, L.J. Butler, Principles of modern chemistry, 8th edn. (Cengage Learning, Boston, 2016), p. 82

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the supports from Vali-e-Asr University of Rafsanjan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. Tabatabai Yazdi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabatabai Yazdi, S., Iranmanesh, P., Khorasanipour, N. et al. A comparative study of the isoelectronic Cd and Hg substitution in EDTA-capped ZnS nanocrystals. J Mater Sci: Mater Electron 30, 13191–13200 (2019). https://doi.org/10.1007/s10854-019-01682-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01682-6

Navigation