Skip to main content
Log in

Influence of reduced graphene oxide on material, antibacterial, and piezoelectric behaviors of ZnO nanorods on foldable indium tin oxide substrates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, zinc oxide nanostructures integrated with reduced graphene oxide (RGO) were fabricated on foldable indium tin oxide substrates. To study the influence of RGO on the material, antibacterial, and piezoelectric properties on the nanostructures, multiple material, antibacterial, and electrical measurements were performed. Results indicate that inserting a RGO layer on the foldable substrate could form nanocylinder ZnO structures, which induced hydrophobicity and better antibacterial properties. Moreover, addition of appropriate RGO into ZnO seed layer may cause the growth of finer ZnO nanorods (NRs) and enhance piezoelectric effects. With stable electrical pulse generative piezoelectric effects and antibacterial properties, ZnO nanostructures with addition of RGO on foldable substrates have potential for future flexible biomedical and electronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Kang, M.F. Lin, J. Chen, P.S. Lee, Small 12, 6370 (2016)

    Article  Google Scholar 

  2. H. Li, J. Song, L. Wang et al., Nanoscale 9(1), 193–200 (2017)

    Article  Google Scholar 

  3. M. Santhiago, J. Bettini, S.R. Araújo, C.C. Bufon, ACS Appl. Mater. Interfaces 8, 10661 (2016)

    Article  Google Scholar 

  4. X. Yu, G. Zhang, H. Cao et al., New J. Chem. 36, 2593 (2012)

    Article  Google Scholar 

  5. C.G. Granqvist, A. Hultåker, Thin Solid Films 411, 1 (2002)

    Article  Google Scholar 

  6. H. Wang, S. Liao, X. Bai et al., ACS Appl. Mater. Interfaces 8, 32661 (2016)

    Article  Google Scholar 

  7. B. Kumar, S.-W. Kim, Nano Energy 1, 342 (2012)

    Article  Google Scholar 

  8. R. Senthilkumar, G. Anandhababu, T. Mahalingam, G. Ravi, J Energy Chem. 25, 798 (2016)

    Article  Google Scholar 

  9. Y. Yu, L. Ye, Y. Song, Y. Guan, J. Zang, Extrem. Mech. Lett. 11, 128 (2017)

    Article  Google Scholar 

  10. M. Azarang, A. Shuhaimi, R. Yousefi, M. Sookhakian, J. Appl. Phys. 116, 084307 (2014)

    Article  Google Scholar 

  11. L. Liu, Z. Niu, L. Zhang, W. Zhou, X. Chen, S. Xie, Adv. Mater. 26, 4855 (2014)

    Article  Google Scholar 

  12. T.-Y. Yu, M.R. Wei, C.Y. Weng et al., AIP Adv. 7, 065110 (2017)

    Article  Google Scholar 

  13. G. Jiang, X. Li, Y. Che, Y. Lv, F. Liu, Y. Wang, C. Zhao, X. Wang, Environ. Sci. Pollut. Res. 26, 1–14 (2019)

    Article  Google Scholar 

  14. K.-A. Wong, S.-M. Lam, J.-C. Sin, Ceram. Int. 45, 1868 (2019)

    Article  Google Scholar 

  15. L. Yang, C. Xu, F. Wan, H. He, H. Gu, J. Xiong, Mater. Res. Bull. 112, 154 (2019)

    Article  Google Scholar 

  16. T.-T. Chen, I.-C. Chang, M.-H. Yang, H.-T. Chiu, C.-Y. Lee, Appl. Catal. B 142, 442 (2013)

    Article  Google Scholar 

  17. Y. Zhao, L. Liu, T. Cui, G. Tong, W. Wu, Appl. Surf. Sci. 412, 58 (2017)

    Article  Google Scholar 

  18. W. Kang, X. Jimeng, W. Xitao, Appl. Surf. Sci. 360, 270 (2016)

    Article  Google Scholar 

  19. J. Tian, S. Liu, H. Li et al., RSC Adv. 2, 1318–1321 (2012)

    Article  Google Scholar 

  20. B.P. Pichon, C. Leuvrey, D. Ihiawakrim, D. Tichit, C. Gérardin, J. Phys. Chem. C 115(48), 23695 (2011)

    Article  Google Scholar 

  21. S. Wang, Y. Yang, J. Chai, K. Zhu, X. Jiang, Z. Du, RSC Adv. 6, 64332 (2016)

    Article  Google Scholar 

  22. Z. Yin, S. Wu, X. Zhou et al., Small 6(2), 307–312 (2010)

    Article  Google Scholar 

  23. M.Y. Choi, D. Choi, M.J. Jin et al., Adv. Mater. 21, 2185 (2009)

    Article  Google Scholar 

Download references

Funding

The funding was supported by Ministry of Science and Technology, Taiwan, under the contract of MOST 107-2221-E-260-015-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsiang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, YS., Chen, Y.Y., Xu, C.Y. et al. Influence of reduced graphene oxide on material, antibacterial, and piezoelectric behaviors of ZnO nanorods on foldable indium tin oxide substrates. J Mater Sci: Mater Electron 30, 13167–13173 (2019). https://doi.org/10.1007/s10854-019-01680-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01680-8

Navigation