Abstract
Alkaline Ni–Fe battery has attracted extensive attentions due to low cost, fast preparation and easy portability. However, the energy-storage capacity of Ni–Fe battery is greatly restricted by low active area and poor electronic conductivity, so it is highly desirable to design suitable electrode materials. In our work, Ni–Mn hydroxides/Ni3S2 (Ni2Mn1-S) nanohybrid with nanosheet structure was successfully fabricated via tuning the Mn content and reaction conditions. The orderly open structure, heterogeneous Mn atoms and even-distributed Ni3S2 phase not only generate more electrochemical active sites, but also significantly promote electronic conductivity, thus enhancing electrochemical performance of hybrid structure. Servered as supercapacitive electrode, the Ni2Mn1-S presents high capacitance (1386.8 C g−1 at 1 A g−1), excellent rate performance (71% retention at 30 A g−1) and suitable cycling stability (79% retention after 5000 cycles). After the coating of RGO nanosheet, the FeOOH@RGO electrode achieves high capacity performance (180 C g−1 at 1 A g−1) and rate performance (66% retention even at 10 A g−1). Furthermore, quasi-solid-state Ni–Fe battery was developed, utilizing a positive Ni2Mn1-S electrode and a negative FeOOH@RGO electrode. The hybrid device could achieve high energy densities (53.8 Wh kg−1 at 820 W kg−1 and 26.2 Wh kg−1 at 8200 W kg−1) and still maintain 75% capacitance after enduring 5000 cycles, which attributes to fast diffusion dynamics of Ni2Mn1-S and FeOOH@RGO electrodes.
This is a preview of subscription content, access via your institution.








References
N. Tuyen, M.F. Montemor, Redox active materials for metal compound based hybrid electrochemical energy storage: a perspective view. Appl. Surf. Sci. 422, 492–497 (2017)
B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)
J. Liu, J. Wang, Z. Ku, H. Wang, S. Chen, L. Zhang, J. Lin, Z.X. Shen, Aqueous rechargeable alkaline CoxNi2−xS2/TiO2 Battery. ACS Nano 10, 1007–1016 (2016)
J. Liu, M. Chen, L. Zhang, J. Jiang, J. Yan, Y. Huang, J. Lin, H.J. Fan, Z.X. Shen, A flexible alkaline rechargeable Ni/Fe battery based on graphene foam/carbon nanotubes hybrid film. Nano Lett. 14, 7180–7187 (2014)
B.Y. Guan, L. Yu, X. Wang, S. Song, X.W. Lou, Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv. Mater. 29, 1605051 (2017)
Z.-B. Zhai, K.-J. Huang, X. Wu, Superior mixed Co–Cd selenide nanorods for high performance alkaline battery-supercapacitor hybrid energy storage. Nano Energy 47, 89–95 (2018)
R. Wang, X. Yan, J. Lang, Z. Zheng, P. Zhang, A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials. J. Mater. Chem. A 2, 12724–12732 (2014)
S. Sun, T. Zhai, C. Liang, S.V. Savilov, H. Xia, Boosted crystalline/amorphous Fe2O3-delta core/shell heterostructure for flexible solid-state pseudocapacitors in large scale. Nano Energy 45, 390–397 (2018)
M. Yu, X. Cheng, Y. Zeng, Z. Wang, Y. Tong, X. Lu, S. Yang, Dual-doped molybdenum trioxide nanowires: a bifunctional anode for fiber-shaped asymmetric supercapacitors and microbial fuel cells. Angew. Chem. Int. Ed. 55, 6762–6766 (2016)
Z. Zhao, S. Hao, P. Hao, Y. Sang, A. Manivannan, N. Wu, H. Liu, Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode. J. Mater. Chem. A 3, 15049–15056 (2015)
T. Brousse, D. Belanger, J.W. Long, To be or not to be pseudocapacitive? J. Electrochem. Soc. 162, A5185–A5189 (2015)
Y. Gogotsi, What nano can do for energy storage. ACS Nano 8, 5369–5371 (2014)
B. Zhao, L. Zhang, Q. Zhang, D. Chen, Y. Cheng, X. Deng, Y. Chen, R. Murphy, X. Xiong, B. Song, C.-P. Wong, M.-S. Wang, M. Liu, Rational design of nickel hydroxide-based nanocrystals on graphene for ultrafast energy storage. Adv. Energy Mater. 8, 1702247 (2018)
S. Dai, B. Zhao, C. Qu, D. Chen, D. Dang, B. Song, B.M. Deglee, J. Fu, C. Hu, C.-P. Wong, M. Liu, Controlled synthesis of three-phase NixSy/rGO nanoflake electrodes for hybrid supercapacitors with high energy and power density. Nano Energy 33, 522–531 (2017)
W. Tian, X. Wang, C. Zhi, T. Zhai, D. Liu, C. Zhang, D. Golberg, Y. Bando, Ni(OH)2 nanosheet @ Fe2O3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes. Nano Energy 2, 754–763 (2013)
L. Huang, D. Chen, Y. Ding, Z.L. Wang, Z. Zeng, M. Liu, Hybrid composite Ni(OH)2@NiCo2O4 grown on carbon fiber paper for high-performance supercapacitors. ACS Appl. Mater. Interfaces 5, 11159–11162 (2013)
C. Feng, J. Zhang, Y. He, C. Zhong, W. Hu, L. Liu, Y. Deng, Sub-3 nm Co3O4 nanofilms with enhanced supercapacitor properties. ACS Nano 9, 1730–1739 (2015)
L.-L. Zhang, H.-H. Li, C.-Y. Fan, K. Wang, X.-L. Wu, H.-Z. Sun, J.-P. Zhang, A vertical and cross-linked Ni(OH)2 network on cellulose-fiber covered with graphene as a binder-free electrode for advanced asymmetric supercapacitors. J. Mater. Chem. A 3, 19077–19084 (2015)
J. Mei, W. Fu, Z. Zhang, X. Jiang, H. Bu, C. Jiang, E. Xie, W. Han, Vertically-aligned Co3O4 nanowires interconnected with Co(OH)2 nanosheets as supercapacitor electrode. Energy 139, 1153–1158 (2017)
Q. Wu, M. Wen, S. Chen, Q. Wu, Lamellar-crossing-structured Ni(OH)2/CNTs/Ni(OH)2 nanocomposite for electrochemical supercapacitor materials. J. Alloys Compd. 646, 990–997 (2015)
M. Huang, F. Li, F. Dong, Y.X. Zhang, L.L. Zhang, MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A 3, 21380–21423 (2015)
Q. Zhang, B. Zhao, J. Wang, C. Qu, H. Sun, K. Zhang, M. Liu, High-performance hybrid supercapacitors based on self-supported 3D ultrathin porous quaternary Zn–Ni–Al–Co oxide nanosheets. Nano Energy 28, 475–485 (2016)
X. Wang, J. Hu, W. Liu, G. Wang, J. An, J. Lian, Ni–Zn binary system hydroxide, oxide and sulfide materials: synthesis and high supercapacitor performance. J. Mater. Chem. A 3, 23333–23344 (2015)
D.J. Milliron, S.M. Hughes, Y. Cui, L. Manna, J.B. Li, L.W. Wang, A.P. Alivisatos, Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430, 190–195 (2004)
M. Lin, G.-H. Kim, J.-H. Kim, J.-W. Oh, J.-M. Nam, Transformative heterointerface evolution and plasmonic tuning of anisotropic trimetallic nanoparticles. J. Am. Chem. Soc. 139, 10180–10183 (2017)
W. Ren, D. Liu, C. Sun, X. Yao, J. Tan, C. Wang, K. Zhao, X. Wang, Q. Li, L. Mai, Nonhierarchical heterostructured Fe2O3/Mn2O3 porous hollow spheres for enhanced lithium storage. Small 14, e1800659–e1800659 (2018)
B. Zhao, D. Chen, X. Xiong, B. Song, R. Hu, Q. Zhang, B.H. Rainwater, G.H. Waller, D. Zhen, Y. Ding, Y. Chen, C. Qu, D. Dang, C.-P. Wong, M. Liu, A high-energy, long cycle-life hybrid supercapacitor based on graphene composite electrodes. Energy Storage Mater. 7, 32–39 (2017)
H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon, Y. Lee, K.C. Roh, K. Kang, A novel high-energy hybrid supercapacitor with an snatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 3, 1500–1506 (2013)
R. Chen, I.K. Puri, I. Zhitomirsky, High areal capacitance of FeOOH-carbon nanotube negative electrodes for asymmetric supercapacitors. Ceram. Int. 44, 18007–18015 (2018)
X. Liang, G. Long, C. Fu, M. Pang, Y. Xi, J. Li, W. Han, G. Wei, Y. Ji, High performance all-solid-state flexible supercapacitor for wearable storage device application. Chem. Eng. J. 345, 186–195 (2018)
Y.-B. He, G.-R. Li, Z.-L. Wang, C.-Y. Su, Y.-X. Tong, Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: controllable electrochemical synthesis and enhanced supercapacitor performances. Energy Environ. Sci. 4, 1288–1292 (2011)
K. Wu, D. Liu, Y. Tang, In-situ single-step chemical synthesis of graphene-decorated CoFe2O4 composite with enhanced Li ion storage behaviors. Electrochim. Acta 263, 515–523 (2018)
H. Chen, S. Zhou, M. Chen, L. Wu, Reduced graphene Oxide-MnO2 hollow sphere hybrid nanostructures as high-performance electrochemical capacitors. J. Mater. Chem. 22, 25207–25216 (2012)
W.-H. Jin, G.-T. Cao, J.-Y. Sun, Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution. J. Power Sources 175, 686–691 (2008)
L. Ye, L. Zhao, H. Zhang, B. Zhang, H. Wang, One-pot formation of ultra-thin Ni/Co hydroxides with a sheet-like structure for enhanced asymmetric supercapacitors. J. Mater. Chem. A 4, 9160–9168 (2016)
C. Guan, J. Liu, C. Cheng, H. Li, X. Li, W. Zhou, H. Zhang, H.J. Fan, Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy Environ. Sci. 4, 4496–4499 (2011)
X. Sun, X. Qiu, L. Li, G. Li, ZnO twin-cones: synthesis, photoluminescence, and catalytic decomposition of ammonium perchlorate. Inorg. Chem. 47, 4146–4152 (2008)
H. Chen, L. Hu, Y. Yan, R. Che, M. Chen, L. Wu, One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance. Adv. Energy Mater. 3, 1636–1646 (2013)
L. Ye, Y. Zhou, Z. Bao, Y. Zhao, Y. Zou, L. Zhao, Q. Jiang, Sheet-membrane Mn-doped nickel hydroxide encapsulated via heterogeneous Ni3S2 nanoparticles for efficient alkaline battery-supercapacitor hybrid devices. J. Mater. Chem. A 6, 19020–19029 (2018)
P.V. Kamath, G.H.A. Therese, J. Gopalakrishnan, On the existence of hydrotalcite-like phases in the absence of trivalent cations. J. Solid State Chem. 128, 38–41 (1997)
M. Wehrens-Dijksma, P.H.L. Notten, Electrochemical quartz microbalance characterization of Ni(OH)2-based thin film electrodes. Electrochim. Acta 51, 3609–3621 (2006)
W. Li, S. Wang, L. Xin, M. Wu, X. Lou, Single-crystal beta-NiS nanorod arrays with a hollow-structured Ni3S2 framework for supercapacitor applications. J. Mater. Chem. A 4, 7700–7709 (2016)
Z. Cheng, H. Abernathy, M. Liu, Raman spectroscopy of nickel sulfide Ni3S2. J. Phys. Chem. C 111, 17997–18000 (2007)
J.-H. Zhong, A.-L. Wang, G.-R. Li, J.-W. Wang, Y.-N. Ou, Y.-X. Tong, Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J. Mater. Chem. 22, 5656–5665 (2012)
X. Xiong, D. Ding, D. Chen, G. Waller, Y. Bu, Z. Wang, M. Liu, Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy 11, 154–161 (2015)
X. Wang, J. Hu, Y. Su, J. Hao, F. Liu, S. Han, J. An, J. Lian, Ni foam-Ni3S2@Ni(OH)2-graphene sandwich structure electrode materials: facile synthesis and high supercapacitor performance. Chem.-Eur. J. 23, 4128–4136 (2017)
J. Li, W. Zhao, F. Huang, A. Manivannan, N. Wu, Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes. Nanoscale 3, 5103–5109 (2011)
J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 22, 2632–2641 (2012)
C. Hou, X.-Y. Lang, Z. Wen, Y.-F. Zhu, M. Zhao, J.-C. Li, W.-T. Zheng, J.-S. Lian, Q. Jiang, Single-crystalline Ni(OH)2 nanosheets vertically aligned on a three-dimensional nanoporous metal for high-performance asymmetric supercapacitors. J. Mater. Chem. A 3, 23412–23419 (2015)
T.-W. Lin, C.-S. Dai, K.-C. Hung, High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes. Sci. Rep. 4, 7274 (2014)
P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C.P. Wong, Z.L. Wang, Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 14, 731–736 (2014)
M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011)
J. Lin, Y. Yan, X. Zheng, Z. Zhong, Y. Wang, J. Qi, J. Cao, W. Fei, Y. Huang, J. Feng, Designing and constructing core-shell NiCo2S4@Ni3S2 on Ni foam by facile one-step strategy as advanced battery-type electrodes for supercapattery. J. Colloid Interface Sci. 536, 456–462 (2019)
T. Li, Y. Zuo, X. Lei, N. Li, J. Liu, H. Han, Regulating the oxidation degree of nickel foam: a smart strategy to controllably synthesize active Ni3S2 nanorod/nanowire arrays for high-performance supercapacitors. J. Mater. Chem. A 4(21), 8029–8040 (2016)
J. Yang, D. Gong, G. Li, G. Zeng, Q. Wang, Y. Zhang, G. Liu, P. Wu, E. Vovk, Z. Peng, X. Zhou, Y. Yang, Z. Liu, Y. Sun, Self-assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules. Adv. Mater. 30, 1705775 (2018)
X. Li, J. Shen, N. Li, M. Ye, Fabrication of gamma-MnS/rGO composite by facile one-pot solvothermal approach for supercapacitor applications. J. Power Sources 282, 194–201 (2015)
K. Wu, K. Du, G. Hu, A novel design concept for fabricating 3D graphene with the assistant of anti-solvent precipitated sulphates and its Li-ion storage properties. J. Mater. Chem. A 6, 3444–3453 (2018)
J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7, 6237–6243 (2013)
K.P. Vishnu, M.F. Ahmed, Cyclic voltammetric studies of nickel hydroxide and cobalt hydroxide thin films in alkali and alkaline earth metal hydroxides. J. Appl. Electrochem. 23, 225–230 (1993)
D. Zhou, X. Xiong, Z. Cai, N. Han, Y. Jia, Q. Xie, X. Duan, T. Xie, X. Zheng, X. Sun, D. Xue, Flame-engraved nickel-iron layered double hydroxide nanosheets for boosting oxygen evolution reactivity. Small Methods 2, 1800083 (2018)
Q. Hu, X. Liu, B. Zhu, L. Fan, X. Chai, Q. Zhang, J. Liu, C. He, L. Zhiqun, Crafting MoC2-doped bimetallic alloy nanoparticles encapsulated within N-doped graphene as roust bifunctional electrocatalysts for overall water splitting. Nano Energy 50, 212–219 (2018)
X. Leng, L. Wu, Y. Liu, C. Li, S. Wei, Z. Jiang, G. Wang, J. Lian, Q. Jiang, A novel open architecture built by ultra-fine single-crystal Co2(CO3)(OH)2 nanowires and reduced graphene oxide for asymmetric supercapacitors. J. Mater. Chem. A 4, 17171–17179 (2016)
B. Zhao, X. Deng, R. Ran, M. Liu, Z. Shao, Facile synthesis of a 3D nanoarchitectured Li4Ti5O12 electrode for ultrafast energy storage. Adv. Energy Mater. 6, 1500924 (2016)
D. Chen, X. Xiong, B. Zhao, M.A. Mahmoud, M.A. El-Sayed, M. Liu, Probing structural evolution and charge storage mechanism of NiO2Hx electrode materials using in operando resonance raman spectroscopy. Adv. Sci. 3, 1500433 (2016)
X. Xu, J. Liu, Z. Liu, J. Shen, R. Hu, J.-W. Liu, L. Ouyang, L. Zhang, M. Zhu, Robust pitaya-structured pyrite as high energy density cathode for high-rate lithium batteries. ACS Nano 11, 9033–9040 (2017)
L. Yang, X. Li, S. He, G. Du, X. Yu, J. Liu, Q. Gao, R. Hu, M. Zhu, Mesoporous Mo2C/N-doped carbon heteronanowires as high-rate and long-life anode materials for Li-ion batteries. J. Mater. Chem. A 4, 10842–10849 (2016)
Q. Wei, Q. Wang, Q. Li, Q. An, Y. Zhao, Z. Peng, Y. Jiang, S. Tan, M. Yan, L. Mai, Pseudocapacitive layered iron vanadate nanosheets cathode for ultrahigh-rate lithium ion storage. Nano Energy 47, 294–300 (2018)
N. Tuyen, M.F. Montemor, gamma-FeOOH and amorphous Ni–Mn hydroxide on carbon nanofoam paper electrodes for hybrid supercapacitors. J. Mater. Chem. A 6, 2612–2624 (2018)
J. Chang, M. Jin, F. Yao, T.H. Kim, L. Viet Thong, H. Yue, F. Gunes, B. Li, A. Ghosh, S. Xie, Y.H. Lee, Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv. Funct. Mater. 23, 5074–5083 (2013)
H. Huo, Y. Zhao, C. Xu, 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. J. Mater. Chem. A 2, 15111–15117 (2014)
H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang, J. Xiao, C.X. Wang, Y.X. Tong, G.W. Yang, Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 4, 1894 (2013)
X. Han, K. Tao, D. Wang, L. Han, Design of a porous cobalt sulfide nanosheet array on Ni foam from zeolitic imidazolate frameworks as an advanced electrode for supercapacitors. Nanoscale 10, 2735–2741 (2018)
X. Wang, R. Ding, X. Ren, L. Shi, Q. Li, Y. Yang, H. Wang, M. Wang, L. Wang, B. Lv, Micron iron oxide particles with thickness-controllable carbon coating for Ni–Fe battery. Electrochim. Acta 299, 800–808 (2019)
Acknowledgements
This work was financially supported by the Natural Science Fund Project of Jilin Province (Grant No. 20190201072 JC) and National Natural Science Foundation of China (Grant No. 51501068).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Ye, L., Feng, L., Zhao, L. et al. Constructing efficient quasi-solid-state alkaline Ni–Fe battery based on Ni–Mn hydroxides/Ni3S2 and FeOOH@RGO electrodes. J Mater Sci: Mater Electron 30, 13076–13089 (2019). https://doi.org/10.1007/s10854-019-01669-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-019-01669-3