Skip to main content
Log in

Effects of laser pulse energy on the structural, optical and electrical properties of pulsed laser deposited Ga-doped ZnO thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transparent conducting Ga-doped ZnO (GZO) thin films were deposited on glass substrate by pulsed laser deposition (PLD). The effects of laser pulse energy ranging from 80 to 200 mJ on microstructural, surface morphology, electrical and optical properties of GZO films were investigated in detail. XRD patterns have shown that all samples were hexagonal wurtzite structure presenting predominant orientation along the (002) c-axis direction, and the film obtained at 160 mJ showed the optimal crystallinity. The Raman spectra demonstrate that GZO films have oxygen vacancies, Zinc interstitials, and residual stress. The compact, homogenous and flat surface morphology of GZO films were observed by AFM. Hall effect measurements revealed that the electrical properties of samples were dominated largely by the crystallinity and the minimum resistivity of 6.10 × 10−4 Ω cm was obtained when GZO film grown at 160 mJ. Optical transmission spectra displayed an average transmittance higher than 90.6% for all GZO samples in the visible range. The film deposited at 160 mJ exhibited the maximum figure of merit of 22.70 × 10−3 Ω−1, owing to the low resistivity and high transmittance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Ungula, B.F. Dejene, H.C. Swart, Band gap engineering, enhanced morphology and photoluminescence of undoped, Ga and/or Al-doped ZnO nanoparticles by reflux precipitation method. J. Lumin. 195, 54–60 (2018). https://doi.org/10.1016/j.jlumin.2017.11.007

    Article  CAS  Google Scholar 

  2. S. Guan, L. Yamawaki, P. Zhang, X. Zhao, Charge-transfer effect of GZO film on photochemical water splitting of transparent ZnO@GZO films by RF magnetron sputtering. Top. Catal. 61, 1585–1590 (2018). https://doi.org/10.1007/s11244-018-0916-3

    Article  CAS  Google Scholar 

  3. A. Tomeda, T. Ishibe, T. Taniguchi, R. Okuhata, K. Watanabe, Y. Nakamura, Enhanced thermoelectric performance of Ga-doped ZnO film by controlling crystal quality for transparent thermoelectric films. Thin Solid Films 666, 185–190 (2018). https://doi.org/10.1016/j.tsf.2018.09.045

    Article  CAS  Google Scholar 

  4. J. Chen, Y. Sun, X. Lv, D. Li, L. Fang, H. Wang, X. Sun, C. Huang, H. Yu, P. Feng, Preparation and characterization of high-transmittance AZO films using RF magnetron sputtering at room temperature. Appl. Surf. Sci. 317, 1000–1003 (2014). https://doi.org/10.1016/j.apsusc.2014.08.051

    Article  CAS  Google Scholar 

  5. L. Xu, X. Li, Y. Chen, F. Xu, Structural and optical properties of ZnO thin films prepared by sol–gel method with different thickness. Appl. Surf. Sci. 257, 4031–4037 (2011). https://doi.org/10.1016/j.apsusc.2010.11.170

    Article  CAS  Google Scholar 

  6. H. Chin, L. Chao, C. Wu, Crystal, optical, and electrical characteristics of transparent conducting gallium-doped zinc oxide films deposited on flexible polyethylene naphthalate substrates using radio frequency magnetron sputtering. Mater. Res. Bull. 79, 90–96 (2016). https://doi.org/10.1016/j.materresbull.2016.03.017

    Article  CAS  Google Scholar 

  7. G. Jo, J. Koh, Prunaa, Laser annealing effects on Ga dopants for ZnO thin films for transparent conducting oxide applications. Ceram. Int. 45, 6190–6196 (2019). https://doi.org/10.1016/j.ceramint.2018.12.096

    Article  CAS  Google Scholar 

  8. H. Kajii, Y. Mohri, H. Okui, M. Kondow, Y. Ohmori, Improved characteristics of conventional and inverted polymer photodetectors using phosphonic acid-based self-assembled monolayer treatment for interfacial engineering of Ga-doped ZnO electrodes. Jpn. J. Appl. Phys. 57, 03DA03 (2018). https://doi.org/10.7567/JJAP.57.03DA03

    Article  Google Scholar 

  9. O. Lassar, G. Merad, S. Lardjane, H. Si Abdelkader, A hybrid density functional study of optical and electronic properties of Al\Ga-codoped ZnO. Optik 179, 566–573 (2019). https://doi.org/10.1016/j.ijleo.2018.10.135

    Article  CAS  Google Scholar 

  10. C. Lee, C. Jeon, B. Lee, S. Jeong, Abrupt conversion of the conductivity and band-gap in the sputter grown Ga-doped ZnO films by a change in growth ambient: effects of oxygen partial pressure. J. Alloys Compd. 742, 977–985 (2018). https://doi.org/10.1016/j.jallcom.2018.01.351

    Article  CAS  Google Scholar 

  11. H. Song, H. Makino, J. Nomoto, N. Yamamoto, T. Yamamoto, Improved moisture stability of thin Ga-doped ZnO films by indium codoping. Appl. Surf. Sci. 457, 241–246 (2018). https://doi.org/10.1016/j.apsusc.2018.06.281

    Article  CAS  Google Scholar 

  12. R. Horng, S. Ou, C. Huang, P. Ravadgar, C. Wu, Effects of Ga concentration and rapid thermal annealing on the structural, optoelectronic and photoluminescence properties of Ga-doped ZnO thin films. Thin Solid Films 605, 30–36 (2016). https://doi.org/10.1016/j.tsf.2015.12.006

    Article  CAS  Google Scholar 

  13. M.T. Ferdaous, S.A. Shahahmadi, M.M.I. Sapeli, P. Chelvanathan, M. Akhtaruzzaman, S.K. Tiong, N. Amin, Interplay between variable direct current sputtering deposition process parameters and properties of ZnO: Ga thin films. Thin Solid Films 660, 538–545 (2018). https://doi.org/10.1016/j.tsf.2018.06.005

    Article  CAS  Google Scholar 

  14. M. Sbeta, A. Atilgan, A. Atli, A. Yildiz, Influence of the spin acceleration time on the properties of ZnO: Ga thin films deposited by sol-gel method. J. Sol Gel. Sci. Technol. 86, 513–520 (2018). https://doi.org/10.1007/s10971-018-4652-8

    Article  CAS  Google Scholar 

  15. H. Kang, Z. Lu, Z. Zhong, J. Gu, Structural, optical and electrical characterization of Ga-Mg co-doped ZnO transparent conductive films. Mater. Lett. 215, 102–105 (2018). https://doi.org/10.1016/j.matlet.2017.12.072

    Article  CAS  Google Scholar 

  16. C. Tiena, K. Yua, T. Tsaia, M. Liu, Effect of RF power on the optical, electrical, mechanical and structural properties of sputtering Ga-doped ZnO thin films. Appl. Surf. Sci. 354, 79–84 (2015). https://doi.org/10.1016/j.apsusc.2015.02.154

    Article  CAS  Google Scholar 

  17. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis. Ceram. Int. 42, 10066–10070 (2016). https://doi.org/10.1016/j.ceramint.2016.03.110

    Article  CAS  Google Scholar 

  18. R.S. Ajimsha, A.K. Das, P. Misra, M.P. Joshi, L.M. Kukreja, R. Kumar, T.K. Sharma, S.M. Oak, Observation of low resistivity and high mobility in Ga doped ZnO thin films grown by buffer assisted pulsed laser deposition. J. Alloys Compd. 638, 55–58 (2015). https://doi.org/10.1016/j.jallcom.2015.02.162

    Article  CAS  Google Scholar 

  19. J. Kim, I. Yer, Growth of ZnO nanowire arrays on Ga-doped ZnO transparent conductive layers. Ceram. Int. 41, 10227–10231 (2015). https://doi.org/10.1016/j.ceramint.2015.04.130

    Article  CAS  Google Scholar 

  20. P.S. Shewale, S.H. Lee, N.K. Lee, Y.S. Yu, Oxygen pressure dependent structural and optoelectronic properties of pulsed laser deposited Ga-doped ZnO thin films. Mater. Res. Express 2, 046401 (2015). https://doi.org/10.1088/2053-1591/2/4/046401

    Article  CAS  Google Scholar 

  21. S.D. Shinde, A.V. Deshmukh, S.K. Date, V.G. Sathe, K.P. Adhi, Effect of Ga doping on micro/structural, electrical and optical properties of pulsed laser deposited ZnO thin films. Thin Solid Films 520, 1212–1217 (2011). https://doi.org/10.1016/j.tsf.2011.06.094

    Article  CAS  Google Scholar 

  22. H. Mahdhi, S. Alaya, J.L. Gauffier, K. Djessas, Z.B. Ayadi, Influence of thickness on the structural, optical and electrical properties of Ga-doped ZnO thin films deposited by sputtering magnetron. J. Alloys Compd. 695, 697–703 (2017). https://doi.org/10.1016/j.jallcom.2016.11.117

    Article  CAS  Google Scholar 

  23. S. Yu, W. Zhang, L. Li, H. Dong, D. Xu, Y. Jin, Structural, electrical, photoluminescence and optical properties of n-type conducting, phosphorus-doped ZnO thin films prepared by pulsed laser deposition. Appl. Surf. Sci. 298, 44–49 (2014). https://doi.org/10.1016/j.apsusc.2014.01.037

    Article  CAS  Google Scholar 

  24. G. Kaurn, A. Mitra, K.L. Yadav, Pulsed laser deposited Al-doped ZnO thin films for optical applications. Prog. Natl. Sci. Mater. Int. 25, 12–21 (2015). https://doi.org/10.1016/j.pnsc.2015.01.012

    Article  CAS  Google Scholar 

  25. P.S. Shewale, S.H. Lee, Y.S. Yu, Pulse repetition rate dependent structural, surface morphological and optoelectronic properties of Ga-doped ZnO thin films grown by pulsed laser deposition. J. Alloys Compd. 725, 1106–1114 (2017). https://doi.org/10.1016/j.jallcom.2017.07.269

    Article  CAS  Google Scholar 

  26. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Appl. Phys. Lett. 83, 1974 (2003). https://doi.org/10.1063/1.1609251

    Article  CAS  Google Scholar 

  27. A. Escobedo-Morales, U. Pal, Effect of In, Sb and Ga doping on the structure and vibrational modes of hydrothermally grown ZnO nanostructures. Curr. Appl. Phys. 11, 525–531 (2011). https://doi.org/10.1016/j.cap.2010.09.007

    Article  Google Scholar 

  28. C. Lung, M. Toma, M. Pop, D. Marconi, A. Pop, Characterization of the structural and optical properties of ZnO thin films doped with Ga, Al and (Al + Ga). J. Alloys Compd. 725, 1238–1243 (2017). https://doi.org/10.1016/j.jallcom.2017.07.265

    Article  CAS  Google Scholar 

  29. H.J. Al-Asedy, N. Bidin, K.N. Abbas, M.A. Al-Azawi, Structure, morphology and photoluminescence attributes of Al/Ga co-doped ZnO nanofilms: role of annealing time. Mater. Res. Bull. 97, 71–80 (2018). https://doi.org/10.1016/j.materresbull.2017.08.050

    Article  CAS  Google Scholar 

  30. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Hydrothermal synthesis of ZnO nanowires on rf sputtered Ga and Al co-doped ZnO thin films for solar cell application. J. Alloys Compd. 721, 45–54 (2017). https://doi.org/10.1016/j.jallcom.2017.05.317

    Article  CAS  Google Scholar 

  31. Y. Chen, F. Meng, F. Ge, G. Xu, F. Huang, Ga-doped ZnO films magnetron sputtered at ultralow discharge voltages: significance of controlling defect generation. Thin Solid Films 615, 19–24 (2016). https://doi.org/10.1016/j.tsf.2018.03.019

    Article  CAS  Google Scholar 

  32. W. Liu, S. Wu, C. Hung, C. Tseng, Y. Chang, Improving the optoelectronic properties of gallium ZnO transparent conductive thin films through titanium doping. J. Alloys Compd. 616, 268–274 (2014). https://doi.org/10.1016/j.jallcom.2014.06.175

    Article  CAS  Google Scholar 

  33. H. Chin, L. Chao, C. Wu, Crystal, optical, and electrical characteristics of transparent conducting gallium-doped zinc oxide films deposited on flexible polyethylene naphthalate substrates using radio frequency magnetron sputtering. Mater. Res. Bull. 79, 90–96 (2016). https://doi.org/10.1016/j.materresbull.2016.03.017

    Article  CAS  Google Scholar 

  34. N. Akin, B. Kinaci, Y. Ozen, S. Ozcelik, Influence of RF power on the opto-electrical and structural properties of gallium-doped zinc oxide thin films. J. Mater. Sci.: Mater. Electron. 28, 7376–7384 (2017). https://doi.org/10.1007/s10854-017-6426-4

    Article  CAS  Google Scholar 

  35. Y. Ko, K. Kim, Y. Kim, Effects of substrate temperature on the Ga-doped ZnO films as an anode material of organic light emitting diodes. Superlattices Microstruct. 51, 933–941 (2012). https://doi.org/10.1016/j.spmi.2012.03.012

    Article  CAS  Google Scholar 

  36. X. Du, J. Li, X. Bi, The role of Ga partial substitution for Al in the enhanced conductivity of transparent AZO thin film. J. Alloys Compd. 698, 128–132 (2017). https://doi.org/10.1016/j.jallcom.2016.12.248

    Article  CAS  Google Scholar 

  37. A.S. Pugalenthi, R. Balasundaraprabhu, V. Gunasekaran, N. Muthukumarasamy, S. Prasanna, S. Jayakumar, Effect of thickness on the structural, optical and electrical properties of RF magnetron sputtered GZO thin films. Mater. Sci. Semicond. Process. 29, 176–182 (2015). https://doi.org/10.1016/j.mssp.2014.02.014

    Article  CAS  Google Scholar 

  38. K. Seo, H. Shin, J. Lee, K. Chung, H. Kim, The effects of thickness on the electrical, optical, structural and morphological properties of Al and Ga co-doped ZnO films grown by linear facing target sputtering. Vacuum 101, 250–256 (2014). https://doi.org/10.1016/j.vacuum.2013.09.009

    Article  CAS  Google Scholar 

  39. D. Kim, H. Kim, Initial vacuum effects on the properties of sputter deposited Ga-doped ZnO thin films. J. Alloys Compd. 709, 627–632 (2017). https://doi.org/10.1016/j.jallcom.2017.03.189

    Article  CAS  Google Scholar 

  40. Yu. Zeng, XiFang Chen, Zao Yi, Yougen Yi, Xibin Xu, Fabrication of p-n heterostructure ZnO/Si moth-eye structures: antireflection, enhanced charge separation and photocatalytic properties. Appl. Surf. Sci. 441, 40–48 (2018). https://doi.org/10.1016/j.apsusc.2018.02.002

    Article  CAS  Google Scholar 

  41. H. Wang, Y. Sun, L. Fang, L. Wang, B. Chang, X. Sun, L. Ye, Growth and characterization of high transmittance GZO films prepared by sol-gel method. Thin Solid Films 615, 19–24 (2016). https://doi.org/10.1016/j.spmi.2014.06.002

    Article  CAS  Google Scholar 

  42. F.A. Garcés, N. Budini, R.D. Arce, J.A. Schmidt, Effect of thickness on structural and electrical properties of Al-doped ZnO films. Thin Solid Films 574, 162–168 (2015). https://doi.org/10.1016/j.tsf.2014.12.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (61474030), the Guangxi Natural Science Foundation (2015GXNSFAA139265), the Foundation of Guangxi Science & Technology Development Project (1598008-15) and the Foundation of Nanning Municipal Science & Technology Development Project (20151268).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, G., Tang, Z., He, H. et al. Effects of laser pulse energy on the structural, optical and electrical properties of pulsed laser deposited Ga-doped ZnO thin films. J Mater Sci: Mater Electron 30, 12804–12811 (2019). https://doi.org/10.1007/s10854-019-01646-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01646-w

Navigation