Skip to main content
Log in

Influence of humidity on complex impedance and dielectric properties of iron manganite (FeMnO3)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bulk samples of iron manganite with a cubic \(Ia\bar{3}\) crystal structure were obtained by solid state synthesis (combination of milling and calcination) of starting hematite (Fe2O3) and manganese carbonate (MnCO3) powders followed by sintering green samples at 1000 °C for 4 h. Structural characterization performed by XRD and SEM analysis confirmed the formation of iron manganite in the form of a porous network of grains and pores with average particle size of 530 and 430 nm, respectively. The influence of humidity on complex impedance and dielectric properties was monitored in the relative humidity range 30–90% in a climatic chamber in the frequency range 42 Hz–1 MHz at working temperatures of 25 and 50 °C. At the lowest frequency of 42 Hz the impedance reduced with relative humidity from 57.9 (RH 30%) to 3.21 MΩ (RH 90%) at 25 °C, and from 23.3 (RH 30%) to 1.3 MΩ (RH 90%) at 50 °C that is approximately 20 times. Analysis of complex impedance using an equivalent circuit showed the dominant influence of grain boundaries. The influence of grains (bulk) was taken into account for higher relative humidity values (70% at 25 °C and 60% at 50 °C) that is related to the mechanism of water interaction with the sample surface. The dielectric constant and loss tangent decreased with increase in frequency in accordance with the Maxwell–Wagner type interfacial polarization mechanism and also increased with increase in relative humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Tripathy, S. Pramanik, A. Manna, S. Bhuyan, N.F.A. Shah, Z. Radzi, N.A.A. Osman, Sensors 16, 1134 (2016)

    Article  Google Scholar 

  2. M. Xu, Q. Li, Y. Ma, H. Fan, Sens. Actuators B 199, 403 (2014)

    Article  CAS  Google Scholar 

  3. S. Ke, H. Huang, H. Fan, H.L.W. Chan, L.M. Zhou, Solid State Ion. 179, 1632 (2008)

    Article  CAS  Google Scholar 

  4. H. Li, H. Fan, Z. Liu, J. Zhang, Y. Wen, J. Lu, X. Jiang, G. Chen, Sens. Actuators B 255, 1445 (2018)

    Article  CAS  Google Scholar 

  5. P. Li, H. Fan, Y. Cai, Sens. Actuators B 185, 110 (2013)

    Article  CAS  Google Scholar 

  6. K. Cao, H. Liu, X. Xu, Y. Wang, L. Jiao, Chem. Commun. 52, 11414 (2016)

    Article  CAS  Google Scholar 

  7. H. Bin, Z. Yao, S. Zhu, C. Zhu, H. Pan, Z. Chen, C. Wolverton, D. Zhang, J. Alloys Compd. 695, 1223 (2017)

    Article  CAS  Google Scholar 

  8. C. Doroftei, P.D. Popa, E. Rezlescu, N. Rezlescu, Composites B 67, 179 (2014)

    Article  CAS  Google Scholar 

  9. M.H. Habibi, V. Mosavi, J. Mater. Sci 28, 10270 (2017)

    CAS  Google Scholar 

  10. M.H. Habibi, V. Mosavi, J. Mater. Sci. 28, 8473 (2017)

    CAS  Google Scholar 

  11. B. Kolk, A. Albers, I.R. Leith, M.G. Howden, Appl. Catal. 37, 57 (1988)

    Article  CAS  Google Scholar 

  12. I. Malaescu, A. Lungu, C.N. Marin, P. Vlazan, P. Sfirloaga, G.M. Turi, Ceram. Int. 42, 16744 (2016)

    Article  CAS  Google Scholar 

  13. D. Seifu, A. Kebede, F.W. Oliver, E. Hoffman, E. Hammond, C. Wynter, A. Aning, L. Takacs, I.-L. Siu, J.C. Walker, G. Tessema, M.S. Sehra, J. Magn. Magn. Mater. 212, 178 (2000)

    Article  CAS  Google Scholar 

  14. S. Rayaprol, S.D. Kaushik, Ceram. Int. 41, 9567 (2015)

    Article  CAS  Google Scholar 

  15. S. Rayaprol, S.D. Kaushik, P.D. Badu, V. Siruguri, A.I.P. Conf, Proc. 1512, 1132 (2013)

    CAS  Google Scholar 

  16. S. Gowreesan, A. Ruban Kumar, Appl. Phys. A 123, 689 (2017)

    Article  Google Scholar 

  17. L. Leontie, C. Doroftei, A. Carlescu, Appl. Phys. A 124, 750 (2018)

    Article  CAS  Google Scholar 

  18. B.H. Toby, R.B. Von Dreele, J. Appl. Crystallography 46, 544 (2013)

    Article  CAS  Google Scholar 

  19. H. Dachs, ZetschriftfuerKristallographie 107, 370 (1956)

  20. A.S. Bondarenko, G. Ragoisha, EIS Spectrum Analyzer, http://www.abc.chemistry.bsu.by

  21. M.V. Nikolic, D.L. Sekulic, Z.Z. Vasiljevic, M.D. Lukovic, V.B. Pavlovic, O.S. Aleksic, J. Mater. Sci. 28, 4796 (2017)

    CAS  Google Scholar 

  22. M.V. Nikolic, M.D. Lukovic, Z.Z. Vasiljevic, N.J. Labus, O.S. Aleksic, J. Mater. Sci. 29, 9227 (2018)

    CAS  Google Scholar 

  23. G. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Sensors 10, 5469 (2010)

    Article  CAS  Google Scholar 

  24. N. Agmon, Chem. Phys. Lett. 244, 456 (1995)

    Article  CAS  Google Scholar 

  25. A. Aziz, E. Ahmed, I. Ali, M. Athar, M.F. Ehsan, M.N. Ashiq, J. Electron. Mater. 44, 4300 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Dr. M. Mitric for XRD measurements. This work was performed as part of projects III45007 and III45014 financed by the Ministry for Education, Science and Technological Development of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Vesna Nikolic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolic, M.V., Lukovic, M.D. & Labus, N.J. Influence of humidity on complex impedance and dielectric properties of iron manganite (FeMnO3). J Mater Sci: Mater Electron 30, 12399–12405 (2019). https://doi.org/10.1007/s10854-019-01598-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01598-1

Navigation