Skip to main content
Log in

High ethanol gas sensing property and modulation of magnetic and AC-conduction mechanism in 5% Mg-doped La0.8Ca0.1Pb0.1FeO3 compound

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of 5% magnesium doping on the structural, magnetic and gas sensing properties of La0.8Ca0.1Pb0.1Fe0.95Mg0.05O3 (LCPFMO) has been investigated. The nanosize compound was prepared by the Sol–Gel method, using the citric acid route. The Structural study confirms that this compound crystallizes in the orthorhombic structure with the Pbnm space group. From the magnetic measurements, we were able to show that the effect of the Mg doping is to increase the saturated magnetization and to decrease the Ferromagnetic–Paramagnetic magnetic phase transition temperature (TC). A theoretical modulation was derived in order to confirm the domination of the ferromagnetic contribution over the Antiferromagnetic one. The AC-conductivity dependence on both temperature and frequency was studied; the study confirmed the presence of two behaviors; at high-temperature region, it was found to be only temperature dependent, while at low temperatures, it depends on both frequency and temperature parameters. At low temperature, the conduction mechanism is studied according to the NSPT model, where all parameters were discussed. The electrical Sensitivity (S) of the prepared sample to different ethanol gas concentration was investigated, using a broadband dielectric spectroscopy. It was found that 5% of magnesium insertion leads to an improvement in the sensitivity of the LCPFMO sample. This sensitivity was found to be ethanol amount dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.P.B. Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, I.P. Muthuselvam, F.C. Chou, J. Alloy. Compd. 646, 924–931 (2015)

    Article  CAS  Google Scholar 

  2. T. Hibino, S. Wang, S. Kakimoto, M. Sano, Solid State Ion 127, 89–98 (2000)

    Article  CAS  Google Scholar 

  3. A. Moser, C.T. Rettner, M.E. Best, E.E. Fullerton, D. Weller, M. Parker, IEEE Trans. Magn. 36, 2137–2139 (2000)

    Article  Google Scholar 

  4. G. Martinelli, M.C. Carotta, M. Ferroni, Y. Sadaoka, E. Traversa, Sens. Actuators, B 55, 99 (1999)

    Article  CAS  Google Scholar 

  5. E.L. Brosha, R. Mukundan, D.R. Brown, F.H. Garzon, J.H. Visser, M. Zanini, Z. Zhou, E.M. Logothetis, CO/HC sensors based on thin films of LaCoO3 oxides. Sens. Actuators, B 69, 171–182 (2000)

    Article  CAS  Google Scholar 

  6. H.J. Hwang, M. Awano, Preparation of LaCoO3-δ and La0.8Sr0.2CoO3-δ catalytic thin film by the sol-gel process and it’s NO decomposition characteristics. J. Eur. Ceram. Soc. 21, 2103–2107 (2001)

    Article  CAS  Google Scholar 

  7. E. Delgado, C.R. Michel, CO2 and O sensing behavior of nanostructured barium-doped SmCoO3. Mater. Lett. 60, 1613–1616 (2006)

    Article  CAS  Google Scholar 

  8. L. Malavasi, C. Tealdi, G. Flor, G. Chiodelli, V. Cervetto, A. Montenero, M. Borella, NdCoO3 perovskite as possible candidate for CO-sensors: thin films synthesis and sensing properties. Sens. Actuators, B 105, 407–411 (2005)

    Article  CAS  Google Scholar 

  9. D. Treves, Studies on orthoferrites at the weizmann institute of science. J. Appl. Phys. 36, 1033–1039 (1965)

    Article  CAS  Google Scholar 

  10. R.H. Kodama, A.E. Berkowitz, Atomic-scale magnetic modeling of oxide nanoparticles. Phys. Rev. B 59, 6321–6336 (1999)

    Article  CAS  Google Scholar 

  11. L. Chen, J. Hu, S. Fang, Z. Han, M. Zhao, Z. Wu, X. Liu, H. Qin, Ethanol-sensing properties of SmFe1−xNixO3 perovskite oxides. Sens. Actuators, B 139, 407–410 (2009)

    Article  CAS  Google Scholar 

  12. X. Liu, J. Hu, B. Cheng, H. Qin, M. Jiang, Acetone gas sensing properties of SmFe1−xMgxO3 perovskite oxides. Sens. Actuators, B 134, 483–487 (2008)

    Article  CAS  Google Scholar 

  13. X. Ge, Y. Liu, X. Liu, Preparation and gas-sensitive properties of LaFe1-yCoyO3 semiconducting materials. Sens. Actuators, B 79, 171–174 (2001)

    Article  CAS  Google Scholar 

  14. X. Liu, B. Cheng, J. Hu, H. Qin, M. Jiang, Semiconducting gas sensor for ethanol based on LaMgxFe1−xO3 nanocrystals. Sens. Actuators, B 129, 53–58 (2008)

    Article  CAS  Google Scholar 

  15. L. Sun, H. Qin, K. Wang, M. Zhao, J. Hu, Structure and electrical properties of nanocrystalline La1−xBaxFeO3 for gas sensing application. Mater. Chem. Phys. 125, 305–308 (2011)

    Article  CAS  Google Scholar 

  16. A. Benali, S. Azizi, M. Bejar, E. Dhahri, M.F.P. Graça, Structural, electrical and ethanol sensing properties of double-doping LaFeO3 perovskite oxides. Ceram. Int. 40, 14367–14373 (2014)

    Article  CAS  Google Scholar 

  17. S. Azizi, A. Benali, M. Bejar, E. Dhahri, M.F.P. Graça, M.A. Valente, Physical properties and ethanol sensing of perovskite La0.8Pb0.2Fe1−xMgxO3 compounds. J. Alloys Compd. 644, 304–307 (2015)

    Article  CAS  Google Scholar 

  18. P. Song, H. Qin, X. Liu, S. Huang, R. Zhang, J. Hu, M. Jiang, Sens. Actuators, B 119, 415 (2006)

    Article  CAS  Google Scholar 

  19. P. Song, H. Qin, S. Huang, X. Liu, R. Zhang, J. Hu, M. Jiang, Mater. Sci. Eng., B 138, 193 (2007)

    Article  CAS  Google Scholar 

  20. C. Doroftei, P.D. Popa, F. Iacomi, L. Leontie, Sens. Actuators, B 191, 239–245 (2014)

    Article  CAS  Google Scholar 

  21. P. Song, J. Hu, H. Qin, L. Zhang, T. Xue, X. Liu, S. Huang, M. Jiang, J. Sol-Gel. Sci. Technol. 35, 65 (2005)

    Article  CAS  Google Scholar 

  22. P. Song, H. Qin, L. Zhang, K. An, Z. Lin, J. Hu, M. Jiang, Sens. Actuators, B 104, 312 (2005)

    Article  CAS  Google Scholar 

  23. H.M. Rietveld, J. Appl. Cryst. 2, 65 (1965)

    Article  Google Scholar 

  24. A. Guinier, Theorie et Technique de la radiocristallographie, 3rd edn. (Dunod, Paris, 1964), p. 462

    Google Scholar 

  25. S. Seto, S. Yamada, K. Suzuki, Structural and optical characterizations of CdTe on CdS grown by hot-wall vacuum evaporation. Solar Energy Mater. Solar Cells 67, 167–171 (2001)

    Article  CAS  Google Scholar 

  26. A. Benali, M. Bejar, E. Dhahri, E.K. Hlil, Study of critical behavior of perovskite La0.8Ca0.2−xPbxFeO3 (x = 0.0, 0.1 and 0.2) compounds. J. Alloys Compd. 638, 305–312 (2015)

    Article  CAS  Google Scholar 

  27. J.Q. Xu, Q.Y. Pan, Y. Shun, Z.Z. Tian, Sens. Actuators, B 66, 277–279 (2000)

    Article  CAS  Google Scholar 

  28. N. Rezlescu, P.D. Popa, E. Rezlescu, C. Doroftei, Microstructure characteristics of some polycrystalline oxide compounds prepared by sol–gel-self combustion way for gas sensor applications. Rom. J. Phys. 53, 545–555 (2008)

    CAS  Google Scholar 

  29. S. Acharya, J. Mondal, S. Ghosh, S.K. Roy, P.K. Chakrabarti, Multiferroic behavior of lanthanum orthoferrite (LaFeO3). Mater. Lett. 64, 415–418 (2010)

    Article  CAS  Google Scholar 

  30. S. Chanda, S. Saha, A. Dutta, B. Irfan, R. Chatterjee, T.P. Sinha, Magnetic and dielectric properties of orthoferrites La1−xPrxFeO3 (x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5). J. Alloys Compd. 649, 1260–1266 (2015)

    Article  CAS  Google Scholar 

  31. A.P.B. Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, P.M.M. Gazzali, G. Chandrasekaran, An analysis on structural and magnetic properties of La1−xRExFeO3 (x = 0.0 and 0.5, RE = Nd, Sm and Gd) nanoparticles. Appl. Phys. A 123, 13 (2017)

    Article  CAS  Google Scholar 

  32. H.C. Gupta, M.K. Singh, L.M. Tiwari, Lattice dynamic investigation of Raman and infrared wavenumbers at the zone center of orthorhombic RFeO3 (R = Tb, Dy, Ho, Er, Tm) perovskites. J. Raman Spectrosc. 33, 67–70 (2002)

    Article  CAS  Google Scholar 

  33. M.K. Singh, H.M. Jang, H.C. Gupta, R.S. Katiyar, Polarized Raman scattering and lattice eigen-modes of antiferromagnetic NdFeO3. J. Raman Spectrosc. 39, 842–848 (2008)

    Article  CAS  Google Scholar 

  34. M.C. Weber, J. Kreisel, P.A. Thomas, M. Newton, K. Sardar, R.I. Walton, Phonon Raman scattering of RCrO3 perovskites (R = Y, La, Pr, Sm, Gd, Dy, Ho, Yb, Lu). Phys. Rev. B 85, 054303 (2012)

    Article  CAS  Google Scholar 

  35. J. Andreasson, J. Holmlund, R. Rauer, M. Kall, L. Borjesson, C.S. Knee, A.K. Eriksson, S.-G. Eriksson, M. Rubhausen, R.P. Chaudhury, Electron-phonon interactions in perovskites containing Fe and Cr studied by Raman scattering using oxygen-isotope and cation substitution. Phys. Rev. B 78, 235103 (2008)

    Article  CAS  Google Scholar 

  36. A. Benali, M. Bejar, E. Dhahri, M. Sajieddin, M.P.F. Graça, M.A. Valente, Magnetic, Raman and Mossbauer properties of double-doping LaFeO3 perovskite oxides. Mater. Chem. Phys. 149–150, 1–6 (2014)

    Google Scholar 

  37. J. Wei, R. Haumont, R. Jarrier, P. Berhtet, B. Dkhil, Appl. Phys. Lett. 96, 102509 (2010)

    Article  CAS  Google Scholar 

  38. J. Wei, D. Xue, Appl. Surf. Sci. 258, 1373 (2011)

    Article  CAS  Google Scholar 

  39. A. Reetu, S. Agarwal, S. Ashima, N. Ahlawat, J. Appl. Phys. 113, 023908 (2013)

    Article  CAS  Google Scholar 

  40. A. Ghosh, M.G. Masud, K. Dey, B.K. Chaudhuri, J. Phys. Chem. Solids 75, 374–378 (2014)

    Article  CAS  Google Scholar 

  41. R. Köferstein, L. Jäger, S.G. Ebbinghaus, Solid State Ionics 249–250, 1–5 (2013)

    Article  CAS  Google Scholar 

  42. Q. Xu, S. Zhou, D. Wu, M. Uhlarz, Y.K. Tang, K. Potzger, M.X. Xu, H. Schmidt, J. Appl. Phys. 107, 1–4 (2010)

    Google Scholar 

  43. L.R. Shah, H. Zhu, W.G. Wang, B. Ali, T. Zhu, X. Fan, Y.Q. Song, Q.Y. Wen, H.W. Zhang, S.I. Shah, J.Q. Xiao, J. Phys. D Appl. Phys. 43, 035002 (2010)

    Article  CAS  Google Scholar 

  44. P. Kumar, N. Shankhwar, A. Srinivasan, M. Kar, J. Appl. Phys. 117, 194103 (2015)

    Article  CAS  Google Scholar 

  45. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory, Experiment and Applications, 2nd edn. (Wiley, New York, 2005), p. 14

    Book  Google Scholar 

  46. S. Lanfredi, P.S. Saia, R. Lebullenger, A.C. Hernandes, Solid State Ion 146, 329 (2002)

    Article  CAS  Google Scholar 

  47. S.R. Elliot, Adv. Phys. 36, 135 (1987)

    Article  Google Scholar 

  48. M.B. Bechir, K. Karoui, M. Tabellout, K. Guidara, A.B. Rhaiem, J. Alloys Compd. 588, 551 (2014)

    Article  CAS  Google Scholar 

  49. A. Ghosh, Phys. Rev. B 41, 1479 (1990)

    Article  CAS  Google Scholar 

  50. M. Pollak, Philos. Mag. 23, 519 (1971)

    Article  CAS  Google Scholar 

  51. S. Mollah, K.K. Som, K. Bose, B.K. Chaudhuri, J. Appl. Phys. 74, 931 (1993)

    Article  CAS  Google Scholar 

  52. M. Megdiche, C. Perrin-Pellegrino, M. Gargouri, J. Alloys Compd. 584, 209 (2014)

    Article  CAS  Google Scholar 

  53. M.P.F. Graça, M.G.F. da Silva, A.S.B. Sombra, M.A. Valente, Electrical characterization of SiO2: LiNbO3 glass and glass–ceramics using dc conductivity, TSDC measure-ments and dielectric spectroscopy. J. Non-Cryst. Solids 353, 4390–4394 (2007)

    Article  CAS  Google Scholar 

  54. A. Šutka, K.A. Gross, Spinel ferrite oxide semiconductor gas sensors. Sens. Actuators B Chem. 222, 95–105 (2016)

    Article  CAS  Google Scholar 

  55. S. Zhang, P. Song, Q. Wang, Enhanced acetone sensing performance of an α-Fe2O3-In2O3 heterostructure nanocomposite sensor. J. Phys. Chem. Solid 120, 261–270 (2018)

    Article  CAS  Google Scholar 

  56. P. Song, H. Qin, L. Zhang, X. Liu, S. Huang, J. Hu, M. Jiang, Electrical and CO gas-sensing properties of perovskite-type La0.8Ca0.2Fe0.8Co0.2FeO3 semiconductive material. Phys. B 368, 204–208 (2005)

    Article  CAS  Google Scholar 

  57. H. Saoudi, A. Benali, M. Bejar, E. Dhahri, T. Fiorido, K. Aguir, R. Hayn, Structural and NH3 gas-sensing properties of La0.8Ca0.1Pb0.1Fe1−xCoxO3 (0.00 ≤ x ≤ 0.20) perovskite compounds. J. Alloys Compd. 731, 655–661 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from: The FCT/MEC through national funds and when applicable co-funded by FEDER-PT2020 partnership agreement under the project, 5G-AHEAD IF/FCT-IF/01393/2015/CP1310/CT0002. FCT, Portugal (Project No. UID/CTM/50025/2013 I3N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Benali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benali, A., Bejar, M., Dhahri, E. et al. High ethanol gas sensing property and modulation of magnetic and AC-conduction mechanism in 5% Mg-doped La0.8Ca0.1Pb0.1FeO3 compound. J Mater Sci: Mater Electron 30, 12389–12398 (2019). https://doi.org/10.1007/s10854-019-01597-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01597-2

Navigation