Skip to main content
Log in

The effect of different surface morphologies on WO3 and WO3-Au gas-sensors performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The high porous surface of tungsten oxide (WO3) gas sensor was deposited by physical vapor deposition (PVD) technique on interdigital FTO-glass substrate deposited by DC sputtering method through the change of substrate position. In order to investigation the effect of Au nanoparticles as dopant on gas sensor performance, these nanoparticles were decorated by PVD method on the surface of high porous WO3 gas sensor. The crystal structure and morphology properties of WO3 gas sensor were evaluated by XRD and FESEM. Furthermore, the NO2 gas sensing properties for three samples including common, high porous and Au decorated high porous surfaces were detected. The Au decorated high porous gas sensor exhibited much higher response, shorter response and recovery time and excellent selectivity to NO2 gas at an operating temperature of 130 °C in compared to other samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Liu et al., Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater. 26(17), 2617–2718 (2014)

    Article  Google Scholar 

  2. Q. Xiang et al., Au Nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing. J. Phys. Chem. C 114, 2049–2055 (2012)

    Article  Google Scholar 

  3. C. Wang et al., Nanosheets assembled hierarchical flower-like WO3 nanostructures: synthesis, characterization, and their gas sensing properties. Sens. Actuators B 210, 75–81 (2015)

    Article  CAS  Google Scholar 

  4. Y.-F. Sun et al., Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12, 2610–2631 (2012)

    Article  CAS  Google Scholar 

  5. K. Wetchakun et al., Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators B 160, 580–591 (2011)

    Article  CAS  Google Scholar 

  6. Y. Wang et al., Preparation of Ag-loaded mesoporous WO3 and its enhanced NO2 sensing performance. Sens. Actuators B 225, 544–552 (2016)

    Article  CAS  Google Scholar 

  7. L.G. Teoh et al., Sensitivity properties of a novel NO2 gas sensor based on mesoporous WO3 thin film. Sens. Actuators B 96, 219–225 (2003)

    Article  CAS  Google Scholar 

  8. T. Siciliano et al., WO3 gas sensors prepared by thermal oxidization of tungsten. Sens. Actuators B 133, 321–326 (2008)

    Article  CAS  Google Scholar 

  9. Z. Hua et al., An investigation on NO2 sensing mechanism and shielding behavior of WO3 nanosheets. Sens. Actuators B 259, 250–257 (2018)

    Article  CAS  Google Scholar 

  10. J. Sarfraz et al., The performance of inkjet-printed copper acetate based Hydrogen sulfide gas sensor on a flexible plastic substrate—varying ink composition and print density. Appl. Surf. Sci. 445, 89–96 (2018)

    Article  CAS  Google Scholar 

  11. S.A. Vanalakar et al., Controlled growth of ZnO nanorod arrays via wet chemical route for NO2 gas sensor applications. Sens. Actuators B 221, 1195–1201 (2015)

    Article  CAS  Google Scholar 

  12. J. Kathirvelan, R. Vijayaraghavan, A. Thomas, Ethylene detection using TiO2–WO3 composite sensor for fruit ripening applications. Sens. Rev. 37, 147–154 (2017)

    Article  Google Scholar 

  13. G. Wang et al., Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing. J. Phys. Chem. B 110, 23777–23782 (2006)

    Article  CAS  Google Scholar 

  14. S. Vallejos et al., Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices. Chem. Commun. (Camb.) 47(1), 565–567 (2011)

    Article  CAS  Google Scholar 

  15. S.S. Shendage et al., Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens. Actuators B 240, 426–433 (2017)

    Article  CAS  Google Scholar 

  16. Z. Zhang et al., Ultrasensitive ppb-level NO2 gas sensor based on WO3 hollow nanosphers doped with Fe. Appl. Surf. Sci. 434, 891–897 (2018)

    Article  CAS  Google Scholar 

  17. Y. Shen et al., Low-temperature and highly enhanced NO2 sensing performance of Au-functionalized WO3 microspheres with a hierarchical nanostructure. Appl. Surf. Sci. 434, 922–931 (2018)

    Article  CAS  Google Scholar 

  18. D.-S. Lee, K.-H. Nam, D.-D. Lee, Effect of substrate on NO -sensing properties of WO thin film 23 gas sensors. Thin Solid Films 375, 142–146 (2000)

    Article  CAS  Google Scholar 

  19. Z. Liu et al., Dealloying derived synthesis of W nanopetal films and their transformation into WO3. J. Phys. Chem. C 112, 1391–1395 (2008)

    Article  CAS  Google Scholar 

  20. R. Jolly Bose et al., Preparation and characterization of Pt loaded WO3 films suitable for gas sensing applications. Appl. Surf. Sci. 440, 320–330 (2018)

    Article  CAS  Google Scholar 

  21. C. Liu et al., The effect of noble metal (Au, Pd, Pt) nanoparticles on the gas sensing performance of SnO2-based sensors: a case study on the 221 high-index faceted SnO2 octahedra. CrystEngComm 17(33), 6308–6313 (2015)

    Article  CAS  Google Scholar 

  22. L. Chen, S.C. Tsang, Ag doped WO3-based powder sensor for the detection of NO gas in air. Sens. Actuators B 89, 68–75 (2003)

    Article  CAS  Google Scholar 

  23. Q. Xiang et al., Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing. J. Phys. Chem. C 114, 2049–2055 (2010)

    Article  CAS  Google Scholar 

  24. R. Ganesan et al., Evolution of target condition in reactive HiPIMS as a function of duty cycle: an opportunity for refractive index grading. J. Appl. Phys. 121(17), 171909 (2017)

    Article  Google Scholar 

  25. A.P. Shpak et al., XPS studies of active elements surface of gas sensors based on WO3−x nanoparticles. J. Electron Spectrosc. Relat. Phenom. 156–158, 172–175 (2007)

    Article  Google Scholar 

  26. F. Lin et al., Low-temperature ozone exposure technique to modulate the stoichiometry of WOx nanorods and optimize the electrochromic performance. Nanotechnology 23(25), 255601 (2012)

    Article  Google Scholar 

  27. H. Najafi-Ashtiani, A. Bahari, S. Gholipour, Investigation of coloration efficiency for tungsten oxide–silver nanocomposite thin films with different surface morphologies. J. Mater. Sci.: Mater. Electron. 29, 5820–5829 (2018)

    CAS  Google Scholar 

  28. Z. Aghagoli, M. Ardyanian, Synthesis and study of the structure, magnetic, optical and methane gas sensing properties of cobalt doped zinc oxide microstructures. J. Mater. Sci.: Mater. Electron. 29(9), 7130–7141 (2018)

    CAS  Google Scholar 

  29. M. Stankova et al., Influence of the annealing and operating temperatures on the gas-sensing properties of rf sputtered WO3 thin-film sensors. Sens. Actuators B 105, 271–277 (2005)

    Article  CAS  Google Scholar 

  30. X. An et al., WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J. Mater. Chem. 22, 8525–8531 (2012)

    Article  CAS  Google Scholar 

  31. G. Xie et al., Gas sensing characteristics of WO3 vacuum deposited thin films. Sens. Actuators B 123, 909–914 (2007)

    Article  CAS  Google Scholar 

  32. D. Meng et al., Preparation of WO3 nanoparticles and application to NO2 sensor. Appl. Surf. Sci. 256, 1050–1053 (2009)

    Article  CAS  Google Scholar 

  33. J. Zeng et al., NO2-sensing properties of porous WO3 gas sensor based on anodized sputtered tungsten thin film. Sens. Actuators B 161, 447–452 (2012)

    Article  CAS  Google Scholar 

  34. Y.-S. Shim et al., Highly sensitive and selective H2 and NO2 gas sensors based on surface-decorated WO3 nanoigloos. Sens. Actuators B 198, 294–301 (2014)

    Article  CAS  Google Scholar 

  35. Y. Shen et al., Influence of effective surface area on gas sensing properties of WO3 sputtered thin films. Thin Solid Films 517, 2069–2072 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Najafi-Ashtiani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi-Ashtiani, H. The effect of different surface morphologies on WO3 and WO3-Au gas-sensors performance. J Mater Sci: Mater Electron 30, 12224–12233 (2019). https://doi.org/10.1007/s10854-019-01581-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01581-w

Navigation