Skip to main content
Log in

Effects of interfacial layer on the electrical properties of n-ZnO/p-Si heterojunction diodes between 260 and 340 K

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrical characteristics and transport properties of n-ZnO/p-Si heterojunction diodes were investigated by current–voltage (I–V) measurements between 260 and 340 K. The ZnO layer was deposited onto p-Si substrate via RF sputtering and the films were annealed at 673 K and 973 K, separately. X-ray diffraction analyses indicate that the both the films are highly oriented along (002) plane. Fourier-transform infrared spectroscopy measurements demonstrate that an interfacial layer (IL) is formed after 973 K annealing. The rectifying behavior of the diodes annealed at 673 K is better than the diodes annealed at 973 K due to the well interface and oxide quality. Saturation current (Io), barrier height (ϕb) and ideality factor (n) markedly vary with ambient temperature. The Io of the diodes annealed at 973 K is higher than the diodes annealed at 673 K which may be attributed to different activation energies of the defects. The ϕb values of the diodes annealed at 973 K significantly decrease, while the n values increase as compared to the diodes annealed at 673 K at the same ambient temperature. Forward bias I–V curves suggest that the current conduction can be approximated to space charge limited current transport between 340 and 300 K, while defect assisted tunneling becomes more dominant to carrier conduction between 300 K and 260 K for the diodes annealed at 673 K. On the other hand, the tunneling transport dominates the current conduction of the diodes annealed at 973 K at all ambient temperatures. The obtained results have depicted that presence of the parasitic IL significantly degrades the electrical performance of diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Tyagi, M. Tomar, V. Gupta, Fabrication of an efficient GLAD-assisted p-NiO nanorod/n-ZnO thin film heterojunction UV photodiode. J. Mater. Chem. C 2, 2387–2393 (2014)

    Article  CAS  Google Scholar 

  2. K. Mageshwari, S. Han, J. Park, Fabrication and characterization of a CuO/ITO heterojunction with a graphene transparent electrode. Semicond. Sci. Tech. 31, 055004 (2016)

    Article  CAS  Google Scholar 

  3. N. Kaur, D. Zappa, M. Ferroni, N. Poli, M. Campanini, R. Negrea, E. Comini, Branch-like NiO/ZnO heterostructures for VOC sensing. Sens. Actuators B 262, 477–485 (2018)

    Article  CAS  Google Scholar 

  4. J.B. Fang, Y.P. Zhu, D.J. Wu, C. Zhang, S.H. Xu, D.Y. Xiong, P.X. Yang, L.W. Wang, P.K. Chu, Gas sensing properties of NiO/SnO2 heterojunction thin film. Sens. Actuators B 252, 1163–1168 (2017)

    Article  CAS  Google Scholar 

  5. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 125, 331–349 (2012)

    Article  CAS  Google Scholar 

  6. Y.I. Alivov, X. Bo, S. Akarca-Biyikli, Q. Fan, J. Xie, N. Biyikli, K. Zhu, D. Johnstone, H. Morkoc, Effect of annealing on electrical properties of radio-frequency-sputtered ZnO films. J. Electron. Mater. 35, 520–524 (2006)

    Article  CAS  Google Scholar 

  7. S. Chirakkara, S.B. Krupanidhi, Study of n-ZnO/p-Si (100) thin film heterojunctions by pulsed laser deposition without buffer layer. Thin Solid Films 520, 5894–5899 (2012)

    Article  CAS  Google Scholar 

  8. S. Benramache, O. Belahssen, A. Arif, A. Guettaf, A correlation for crystallite size of undoped ZnO thin film with the band gap energy—precursor molarity—substrate temperature. Optik 125, 1303–1306 (2014)

    Article  CAS  Google Scholar 

  9. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent advances in processing of ZnO. J. Vac. Sci. Technol. B 22, 932–948 (2004)

    Article  CAS  Google Scholar 

  10. D. Somvanshi, S. Jit, Analysis of temperature-dependent electrical characteristics of n-ZnO nanowires (NWs)/p-Si heterojunction diodes. IEEE Trans. Nanotechnol. 13, 62–69 (2014)

    Article  CAS  Google Scholar 

  11. S.M. Faraz, N.H. Alvi, A. Henry, O. Nur, M. Willander, Q. Wahab, Annealing effects on electrical and optical properties of n-ZnO/p-Si heterojunction diodes. Adv. Mater. Res. 324, 233–236 (2011)

    Article  CAS  Google Scholar 

  12. Y.I. Alivov, E.V. Kalinina, A.E. Cherenkov, D.C. Look, B.M. Ataev, A.K. Omaev, M.V. Chukichev, D.M. Bagnall, Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl. Phys. Lett. 83, 4719–4721 (2003)

    Article  CAS  Google Scholar 

  13. Y.I. Alivov, U. Ozgur, S. Dogan, D. Johnstone, V. Avrutin, N. Onojima, C. Liu, J. Xie, Q. Fan, H. Morkoc, P. Ruterana, High efficiency n-ZnO/p-SiC heterostructure photodiodes grown by plasma-assisted molecular-beam epitaxy. Superlattice Microstruct. 38, 439–445 (2005)

    Article  CAS  Google Scholar 

  14. C. Xiong, J. Xiao, L. Chen, W.H. Du, W.L. Xu, D.D. Hou, Interfacial passivation of n-ZnO/p-Si heterojunction by CuI thin layer. J. Semicond. 39, 124013 (2018)

    Article  CAS  Google Scholar 

  15. S.K. Akay, S. Sarsici, H.K. Kaplan, Determination of electrical parameters of ZnO/Si heterojunction device fabricated by RF magnetron sputtering. Opt. Quant. Electron. 50, 362 (2018)

    Article  CAS  Google Scholar 

  16. B. Yin, H.Q. Zhang, Y. Qiu, Y.M. Luo, Y. Zhao, L.Z. Hu, The light-induced pyro-phototronic effect improving a ZnO/NiO/Si heterojunction photodetector for selectively detecting ultraviolet or visible illumination. Nanoscale 9, 17199–17206 (2017)

    Article  CAS  Google Scholar 

  17. B. Hussain, A. Aslam, T.M. Khan, M. Creighton, B. Zohuri, Electron affinity and bandgap optimization of zinc oxide for improved performance of ZnO/Si heterojunction solar cell using PC1D simulations. Electronics 8, 238 (2019)

    Article  CAS  Google Scholar 

  18. M. Kwoka, L. Ottaviano, M. Passacantando, S. Santucci, J. Szuber, XPS depth profiling studies of L-CVD SnO2 thin films. Appl. Surf. Sci. 252, 7730–7733 (2006)

    Article  CAS  Google Scholar 

  19. S.D. Yang, Y.X. Zheng, L. Yang, Z.H. Liu, W.J. Zhou, S.Y. Wang, R.J. Zhang, L.Y. Chen, Structural and optical properties of highly (110)-oriented non-polar ZnO evaporated films on Si substrates. Appl. Surf. Sci. 421, 891–898 (2017)

    Article  CAS  Google Scholar 

  20. Y. Zhang, J. Xu, B.X. Lin, Z.X. Fu, S. Zhong, C.H. Liu, Z.Y. Zhang, Fabrication and electrical characterization of nanocrystalline ZnO/Si heterojunctions. Appl. Surf. Sci. 252, 3449–3453 (2006)

    Article  CAS  Google Scholar 

  21. S. Majumdar, P. Banerji, Temperature dependent electrical transport in p-ZnO/n-Si heterojunction formed by pulsed laser deposition. J. Appl. Phys. 105, 043704 (2009)

    Article  CAS  Google Scholar 

  22. N. Zebbar, Y. Kheireddine, K. Mokeddem, A. Hafdallah, M. Kechouane, M.S. Aida, Structural, optical and electrical properties of n-ZnO/p-Si heterojunction prepared by ultrasonic spray. Mater. Sci. Semicond. Process. 14, 229–234 (2011)

    Article  CAS  Google Scholar 

  23. J.B. You, X.W. Zhang, S.G. Zhang, H.R. Tan, J. Ying, Z.G. Yin, Q.S. Zhu, P.K. Chu, Electroluminescence behavior of ZnO/Si heterojunctions: energy band alignment and interfacial microstructure. J. Appl. Phys. 107, 083701 (2010)

    Article  CAS  Google Scholar 

  24. A. Kocyigit, I. Orak, S. Aydogan, Z. Caldiran, A. Turut, Temperature-dependent C-V characteristics of Au/ZnO/n-Si device obtained by atomic layer deposition technique. J Mater Sci. 28, 5880–5886 (2017)

    CAS  Google Scholar 

  25. M. Asghar, K. Mahmood, S. Rabia, B.M. Samaa, M.Y. Shahid, M.A. Hasan, Investigation of temperature dependent barrier height of Au/ZnO/Si schottky diodes. IOP Conf. Ser. 60, 012041 (2014)

    Article  CAS  Google Scholar 

  26. S.R.T. Djiokap, Z.N. Urgessa, C.M. Mbulanga, A. Venter, J.R. Botha, Transport characteristics of n-ZnO/p-Si heterojunction as determined from temperature dependent current-voltage measurements. Phys. B 480, 68–71 (2016)

    Article  CAS  Google Scholar 

  27. S. Sali, M. Boumaour, S. Kermadi, A. Keffous, M. Kechouane, Effect of doping on structural, optical and electrical properties of nanostructure ZnO films deposited onto a-Si:h/Si heterojunction. Superlattice Microstruct. 52, 438–448 (2012)

    Article  CAS  Google Scholar 

  28. T. Chen, S.Y. Liu, Q. Xie, C. Detavernier, R.L. Van Meirhaeghe, X.P. Qu, The effects of deposition temperature and ambient on the physical and electrical performance of DC-sputtered n-ZnO/p-Si heterojunction. Appl. Phys. A 98, 357–365 (2010)

    Article  CAS  Google Scholar 

  29. T.H. Su, C.H. Chiang, Y.J. Lin, Temperature dependence of current-voltage characteristics of MoS2/Si devices prepared by the chemical vapor deposition method. Microelectron. Reliab. 78, 374–378 (2017)

    Article  CAS  Google Scholar 

  30. Y.K. Tseng, F.M. Pai, Y.C. Chen, C.H. Wu, Effects of UV assistance on the properties of al-doped ZnO thin films deposited by sol-gel method. Electron. Mater. Lett. 9, 771–773 (2013)

    Article  CAS  Google Scholar 

  31. Y.S. Choi, J.Y. Lee, S. Im, S.J. Lee, Photoresponse characteristics of n-ZnO/p-Si heterojunction photodiodes. J. Vaccum. Sci. Technol. B 20, 2384–2387 (2002)

    Article  CAS  Google Scholar 

  32. Z.L. Tseng, C.H. Chiang, C.G. Wu, Surface engineering of ZnO thin film for high efficiency planar perovskite solar cells. Sci. Rep. 5, 13211 (2015)

    Article  CAS  Google Scholar 

  33. R. Singh, M. Kumar, S. Chandra, Growth and characterization of high resistivity c-axis oriented ZnO films on different substrates by RF magnetron sputtering for MEMS applications. J. Mater. Sci. 42, 4675–4683 (2007)

    Article  CAS  Google Scholar 

  34. R.G. Singh, F. Singh, R.M. Mehra, D. Kanjilal, V. Agarwal, Synthesis of nanocrystalline alpha-Zn2SiO4 at ZnO-porous silicon interface: phase transition study. Solid State Commun. 151, 701–703 (2011)

    Article  CAS  Google Scholar 

  35. R. Lok, S. Kaya, E. Yilmaz, Thermal phase separation of ZrSiO4 thin films and frequency-dependent electrical characteristics of the Al/ZrSiO4/p-Si/Al MOS capacitors. Semicond. Sci. Technol. 33, 055007 (2018)

    Article  CAS  Google Scholar 

  36. E. Kayahan, N. Ceylan, K. Esmer, Ag-metallization effects on optical and electrical properties of porous silicon. Appl. Surf. Sci. 255, 2808–2812 (2008)

    Article  CAS  Google Scholar 

  37. S. Kaya, Evolutions on surface chemistry, microstructure, morphology and electrical characteristics of SnO2/p-Si heterojuction under various annealing parameters. J. Alloy. Compd. 778, 889–899 (2019)

    Article  CAS  Google Scholar 

  38. E. Kayahan, White light luminescence from annealed thin ZnO deposited porous silicon. J. Lumin. 130, 1295–1299 (2010)

    Article  CAS  Google Scholar 

  39. L.W. Yang, X.L. Wu, G.S. Huang, T. Qiu, Y.M. Yang, G.G. Siu, Self-catalytic synthesis and light-emitting property of highly aligned Mn-doped Zn2SiO4 nanorods. Appl. Phys. A 81, 929–931 (2005)

    Article  CAS  Google Scholar 

  40. C.M. Parler, J.A. Ritter, M.D. Amiridis, Infrared spectroscopic study of sol-gel derived mixed-metal oxides. J. Non-Cryst. Solids 279, 119–125 (2001)

    Article  CAS  Google Scholar 

  41. V.S.K. Valiveti, F. Singh, S. Ojha, D. Kanjilal, Influence of thermal annealing and ion irradiation on zinc silicate phases in nanocomposite ZnO-SiOx thin films. Appl. Surf. Sci. 317, 1075–1079 (2014)

    Article  CAS  Google Scholar 

  42. X.L. Xu, C.X. Guo, Z.M. Qi, H.T. Liu, J. Xu, C.S. Shi, C. Chong, W.H. Huang, Y.J. Zhou, C.M. Xu, Annealing effect for surface morphology and luminescence of ZnO film on silicon. Chem. Phys. Lett. 364, 57–63 (2002)

    Article  CAS  Google Scholar 

  43. S. Kaya, E. Yilmaz, A. Aktag, J. Seidel, Characterization of interface defects in BiFeO3 metal-oxide-semiconductor capacitors deposited by radio frequency magnetron sputtering. J. Mater. Sci. 26, 5987–5993 (2015)

    CAS  Google Scholar 

  44. H.H. Gullu, O. Bayrakli, D.E. Yildiz, M. Parlak, Study on the electrical properties of ZnSe/Si heterojunction diode. J. Mater. Sci. 28, 17806–17815 (2017)

    CAS  Google Scholar 

  45. I.S. Yahia, G.B. Sakr, T. Wojtowicz, G. Karczewski, p-ZnTe/n-CdMnTe/n-GaAs diluted magnetic diode for photovoltaic applications. Semicond. Sci. Technol. 25, 095001 (2010)

    Article  CAS  Google Scholar 

  46. B.C. Liu, C.H. Liu, Z.X. Fu, B. Yi, Effects of grain boundary barrier in ZnO/Si heterostructure. Chin. Phys. Lett. 26, 117101 (2009)

    Article  Google Scholar 

  47. S.M. Faraz, N.H. Alvi, A. Henry, O. Nur, M. Willander, Q. Wahab, Post fabrication annealing effects on electrical and optical characteristics of n-ZnO nanorods/p-Si heterojunction diodes. Nanotechnology 2, 68–71 (2011)

    CAS  Google Scholar 

  48. R.I. Badran, A. Umar, S. Al-Heniti, A. Al-Hajry, T. Al-Harbi, Synthesis and characterization of zinc oxide nanorods on silicon for the fabrication of p-Si/n-ZnO heterojunction diode. J. Alloy. Compd. 508, 375–379 (2010)

    Article  CAS  Google Scholar 

  49. R.I. Badran, A. Umar, Fabrication of heterojunction diode based on n-ZnO nanowires/p-Si substrate: temperature dependent transport characteristics. J. Nanosci. Nanotechnol. 17, 581–587 (2017)

    Article  CAS  Google Scholar 

  50. M.M. Islam, N. Miyashita, N. Ahsan, T. Sakurai, K. Akimoto, Y. Okada, Identification of defect types in moderately Si-doped GaInNAsSb layer in p-GaAs/n- GaInNAsSb/n-GaAs solar cell structure using admittance spectroscopy. J. Appl. Phys. 112, 114910 (2012)

    Article  CAS  Google Scholar 

  51. P. Schlupp, H. von Wenckstern, M. Grundmann, Schottky barrier diodes based on room temperature fabricated amorphous zinc tin oxide thin films. Phys. Stat. Solidi A 214, 1700210 (2017)

    Article  CAS  Google Scholar 

  52. C.X. Zhang, X. Shen, E.X. Zhang, D.M. Fleetwood, R.D. Schrimpf, S.A. Francis, T. Roy, S. Dhar, S.H. Ryu, S.T. Pantelides, temperature dependence and postirradiation annealing response of the 1/f noise of 4H-SiC MOSFETs. IEEE Trans. Electron. Devices 60, 2361–2367 (2013)

    Article  CAS  Google Scholar 

  53. I.C. Kizilyalli, O. Aktas, Characterization of vertical GaN p-n diodes and junction field-effect transistors on bulk GaN down to cryogenic temperatures. Semicond. Sci. Technol. 30, 124001 (2015)

    Article  CAS  Google Scholar 

  54. M. Kaleli, M. Parlak, C. Ercelebi, Studies on device properties of an n-AgIn5Se8/p-Si heterojunction diode. Semicond. Sci. Technol. 26, 105013 (2011)

    Article  CAS  Google Scholar 

  55. M. Lajvardi, M.E. Ghazi, M. Izadifard, H. Eshghi, I. Hadi, Effect of seed layer thickness on optoelectronic properties of ZnO-NRs/p-Si photodiodes. Optik 160, 234–242 (2018)

    Article  CAS  Google Scholar 

  56. S. Acharya, K.V. Bangera, G.K. Shivakumar, Conduction mechanism in n-CdSe/p-ZnTe heterojunction. J. Electron. Mater. 45, 3324–3331 (2016)

    Article  CAS  Google Scholar 

  57. N. Tugluoglu, S. Karadeniz, Analysis of current-voltage and capacitance-voltage characteristics of perylene-monoimide/n-Si schottky contacts. Curr. Appl. Phys. 12, 1529–1535 (2012)

    Article  Google Scholar 

  58. H.H. Gullu, M. Parlak, Temperature dependence of electrical properties in Cu0.5Ag0.5InSe2/Si heterostructure. J. Mater. Sci. 29, 11258–11264 (2018)

    CAS  Google Scholar 

  59. H. Tanrikulu, A. Tataroglu, E.E. Tanrikulu, A.B. Ulusan, Electrical characterization of MIS diode prepared by magnetron sputtering. Indian J. Pure Appl. Phys. 56, 142–148 (2018)

    Google Scholar 

  60. H.H. Gullu, D.E. Yildiz, O.B. Surucu, M. Terlemezoglu, M. Parlak, Temperature dependence of electrical properties in In/Cu2ZnSnTe4/Si/Ag diodes. Bull. Mater. Sci. 42, 45 (2019)

    Article  CAS  Google Scholar 

  61. S.M. Sze, K.N. Kwok, Physics of Semiconductor Devices (Wiley, Hoboken, 2007)

    Google Scholar 

  62. O. Bayrakli, M. Terlemezoglu, H.H. Gullu, M. Parlak, Deposition of CZTSe thin films and illumination effects on the device properties of Ag/n-Si/p-CZTSe/In heterostructure. J. Alloy. Compd. 709, 337–343 (2017)

    Article  CAS  Google Scholar 

  63. M. Terlemezoglu, O. Bayrakli, H.H. Gullu, T. Colakoglu, D.E. Yildiz, M. Parlak, Analysis of current conduction mechanism in CZTSSe/n-Si structure. J. Mater. Sci. 29, 5264–5274 (2018)

    CAS  Google Scholar 

  64. S. Yilmaz, E. Bacaksiz, I. Polat, Y. Atasoy, Fabrication and structural, electrical characterization of i-ZnO/n-ZnO nanorod homojunctions. Curr. Appl. Phys. 12, 1326–1333 (2012)

    Article  Google Scholar 

  65. S. Ranwa, P.K. Kulriya, V. Dixit, M. Kumar, Temperature dependent electrical transport studies of self-aligned ZnO nanorods/Si heterostructures deposited by sputtering. J. Appl. Phys. 115, 233706 (2014)

    Article  CAS  Google Scholar 

  66. E. Coskun, H.H. Gullu, I. Candan, O. Bayrakli, M. Parlak, C. Ercelebi, Device behavior of an In/p-Ag(Ga, In)Te-2/n-Si/Ag heterojunction diode. Mater. Sci. Semicond Process. 34, 138–145 (2015)

    Article  CAS  Google Scholar 

  67. A. Das, A. Kushwaha, R.K. Sivasayan, S. Chakraborty, H.S. Dutta, A. Karmakar, S. Chattopadhyay, D.Z. Chi, G.K. Dalapati, Temperature-dependent electrical characteristics of CBD/CBD grown n-ZnO nanowire/p-Si heterojunction diodes. J. Phys. D 49, 145105 (2016)

    Article  CAS  Google Scholar 

  68. A. Motayed, S.N. Mohammad, Chemicophysical surface treatment and the experimental demonstration of Schottky-Mott rules for metal/semiconductor heterostructure interfaces. J. Chem. Phys. 123, 194703 (2005)

    Article  CAS  Google Scholar 

  69. K. Suzue, S.N. Mohammad, Z.F. Fan, W. Kim, O. Aktas, A.E. Botchkarev, H. Morkoc, Electrical conduction in platinum-gallium nitride Schottky diodes. J. Appl. Phys. 80, 4467–4478 (1996)

    Article  CAS  Google Scholar 

  70. X.Y. Teng, Y.H. Wu, W. Yu, W. Gao, G.S. Fu, Current transport in ZnO/Si heterostructure grown by laser molecular beam epitaxy. Chin. Phys. B 21, 097105 (2012)

    Article  CAS  Google Scholar 

  71. J.B. Yoo, A.L. Fahrenbruch, R.H. Bube, Transport mechanisms in ZnO-Cds-Cuinse2 solar-cells. J. Appl. Phys. 68, 4694–4699 (1990)

    Article  CAS  Google Scholar 

  72. H. Tecimer, S. Aksu, H. Uslu, Y. Atasoy, E. Bacaksız, Ş. Altındal, Schottky diode properties of CuInSe2 films prepared by a two-step growth technique. Sens. Actuators A 185, 73–81 (2012)

    Article  CAS  Google Scholar 

  73. M.F. Kotkata, S.A. Mansour, Current transport mechanisms for heterojunctions of a-Se on various crystalline wafers (n-Si, p-Si and n-GaAs). Thin Solid Films 518, 3407–3412 (2010)

    Article  CAS  Google Scholar 

  74. W.W. Wenas, S. Riyadi, Carrier transport in high-efficiency ZnO/SiO2/Si solar cells. Sol. Eng. Mater. Sol. Cell 90, 3261–3267 (2006)

    Article  CAS  Google Scholar 

  75. X. Chen, D.L. Liu, J.S. Chen, G.L. Wang, The effect of a SiO2 layer on the performance of a ZnO-based SAW device for high sensitivity biosensor applications. Smart Mater. Struct. 18, 115021 (2009)

    Article  CAS  Google Scholar 

  76. C.C. Ling, T.C. Guo, W.B. Lu, Y. Xiong, L. Zhu, Q.Z. Xue, Ultrahigh broadband photoresponse of SnO2 nanoparticle thin film/SiO2/p-Si heterojunction. Nanoscale 9, 8848–8857 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Presidency of Turkey, Presidency of Strategy and Budget under Contract Number: 2016K121110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senol Kaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, S., Yilmaz, E. Effects of interfacial layer on the electrical properties of n-ZnO/p-Si heterojunction diodes between 260 and 340 K. J Mater Sci: Mater Electron 30, 12170–12179 (2019). https://doi.org/10.1007/s10854-019-01575-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01575-8

Navigation