Skip to main content
Log in

Effects of substrate annealing on wettability and intermetallic compound formation in Sn–3.0Cu/Cu systems

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper investigates the effects of Cu substrate annealing on the wettability of Sn–3.0Cu lead-free solder and the subsequent growth of the intermetallic compounds that are formed at the interface between the solder and the substrate. The annealing processes yielded various grain sizes, grain orientations, and residual strains within the substrates. Then, effects of the Cu substrates on the wetting and intermetallic formation were studied via reflow soldering using Sn–3.0Cu lead-free solder. The annealed substrates were compared to an unannealed Cu reference at soldering times of 20, 40, 60 and 120 s. The experimental results demonstrated that the substrate grain orientation, residual strain and grain size exert no influence on the solder wettability. After soldering, only a η-Cu6Sn5 intermetallic compound was observed in the interfacial layer for both the reference and annealed copper substrates. The thickness of the η-Cu6Sn5 layer was found to be independent of the substrate grain size but increased as the misorientation angle and the residual strain in the substrate increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The raw/processed data that are required for reproducing these findings cannot be shared at this time as the data also constitute part of an ongoing study.

References

  1. F.Y. Ouyang, Y.P. Su, J. Alloy. Compd. 655, 155 (2016)

    Article  CAS  Google Scholar 

  2. Q.K. Zhang, W.M. Long, Z.F. Zhang, J. Alloy. Compd. 646, 405 (2015)

    Article  CAS  Google Scholar 

  3. H. Nishikawa, N. Iwata, J. Mater. Process. Technol. 215, 6 (2015)

    Article  CAS  Google Scholar 

  4. J. Koo, J. Chang, Y.W. Lee, S.J. Hong, K.-S. Kim, H.M. Lee, J. Alloy. Compd. 608, 126 (2014)

    Article  CAS  Google Scholar 

  5. M.J. Rizvi, C. Bailey, Y.C. Chan, M.N. Islam, H. Lu, J. Alloy. Compd. 438, 122 (2007)

    Article  CAS  Google Scholar 

  6. A. Sharif, Y.C. Chan, Mater. Sci. Eng., B 106, 126 (2004)

    Article  CAS  Google Scholar 

  7. T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. 49, 1 (2005)

    Article  CAS  Google Scholar 

  8. G.K. Sujan, A.S.M.A. Haseeb, A.B.M. Afifi, Mater. Charact. 97, 199 (2014)

    Article  CAS  Google Scholar 

  9. P.J. Shang, Z.Q. Liu, D.X. Li, J.K. Shang, J. Electron. Mater. 38, 2579 (2009)

    Article  CAS  Google Scholar 

  10. R. Zhang, Y. Tian, B. Liu, C. Hang, in 2013 14th International Conference On Electronic Packaging Technology (ICEPT) (IEEE, 2013), pp. 1276–1279

  11. J.O. Suh, K.N. Tu, J. Appl. Phys. 102, 1 (2007)

    Article  CAS  Google Scholar 

  12. K.N. Tu, Solder Joint Technology (Springer, New York, 2007)

    Google Scholar 

  13. O.M. Abdelhadi, L. Ladani, J. Alloy. Compd. 537, 87 (2012)

    Article  CAS  Google Scholar 

  14. J. Shen, Y.C. Chan, S.Y. Liu, Acta Mater. 57, 5196 (2009)

    Article  CAS  Google Scholar 

  15. M. Schaefer, R.A. Fournelle, J. Liang, J. Electron. Mater. 27, 1167 (1998)

    Article  CAS  Google Scholar 

  16. K. Cao, K. Tan, C. Lai, L. Zhang, in 2009 International Conference on Electronic Packaging Technology & High Density Packaging (IEEE, 2009), pp. 819–823

  17. R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles (Cengage Learning, Boston, 2008)

    Google Scholar 

  18. P.T. Lee, Y.S. Wu, P.C. Lin, C.C. Chen, W.Z. Hsieh, C.E. Ho, Surf. Coat. Technol. 320, 559 (2017)

    Article  CAS  Google Scholar 

  19. Y.J. Li, C. Chen, in Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2016 11th International (IEEE, 2016), pp. 42–44

  20. J.M. Wang, K.J. Wang, J.G. Duh, J. Electron. Mater. 40, 1549 (2011)

    Article  CAS  Google Scholar 

  21. M.L. Huang, F. Yang, Sci. Rep. 4, 7117 (2014). https://doi.org/10.1038/srep07117

    Article  Google Scholar 

  22. P. Shen, Z. Yin, J. Yang, J. Sun, Z. Jiang, Q. Jiang, Surf. Interface Anal. 42, 1681 (2010)

    Article  CAS  Google Scholar 

  23. B.J. Lee, N.M. Hwang, H.M. Lee, Acta Mater. 45, 1867 (1997)

    Article  CAS  Google Scholar 

  24. E. Chauvet, P. Kontis, E.A. Jägle, B. Gault, D. Raabe, C. Tassin, J.J. Blandin, R. Dendievel, B. Vayre, S. Abed, Acta Mater. 142, 82 (2018)

    Article  CAS  Google Scholar 

  25. B.B. Straumal, B.S. Bokshtein, A.B. Straumal, A.L. Petelin, JETP Lett. 88, 537 (2008)

    Article  CAS  Google Scholar 

  26. A.S. Gornakova, B.B. Straumal, S. Tsurekawa, L.S. Chang, A.N. Nekrasov, Rev. Adv. Mater. Sci. 21, 18 (2009)

    CAS  Google Scholar 

  27. E. Rabkin, I. Snapiro, Acta Mater. 48, 4463 (2000)

    Article  CAS  Google Scholar 

  28. ASTM, in ASTM International E 112-12 (2012), pp. 1–27

  29. L.A.I. Kestens, H. Pirgazi, Mater. Sci. Technol. 32, 1303 (2016)

    Article  CAS  Google Scholar 

  30. C.E. Ho, C.C. Chen, M.K. Lu, Y.W. Lee, Y.S. Wu, Surf. Coat. Technol. 303, 86 (2016)

    Article  CAS  Google Scholar 

  31. M.R. Akbarpour, M. Farvizi, H.S. Kim, Mater. Des. 119, 311 (2017)

    Article  CAS  Google Scholar 

  32. D.P. Field, L.T. Bradford, M.M. Nowell, T.M. Lillo, Acta Mater. 55, 4233 (2007)

    Article  CAS  Google Scholar 

  33. D. Yadav, R. Bauri, Mater. Sci. Technol. 31, 494 (2015)

    Article  CAS  Google Scholar 

  34. N. Bozzolo, A. Agnoli, N. Souaï, M. Bernacki, R.E. Logé, Mater. Sci. Forum 753, 321 (2013)

    Article  CAS  Google Scholar 

  35. O. Glushko, M.J. Cordill, Scr. Mater. 130, 42 (2017)

    Article  CAS  Google Scholar 

  36. Z.D. Jastrzebski, The Nature of Properties of Engineering Materials, 2nd edn. (Wiley, New York, 1987)

    Google Scholar 

  37. Y. Takayama, J.A. Szpunar, H. Kato, Mater. Sci. Forum 495–497, 1049 (2009)

    Google Scholar 

  38. C.M.L. Wu, D.Q. Yu, C.M.T. Law, L. Wang, Mater. Sci. Eng. 44, 1 (2004)

    Article  CAS  Google Scholar 

  39. Satyanarayan, K.N. Prabhu, Adv. Colloid Interface Sci. 166, 87 (2011)

    Article  CAS  Google Scholar 

  40. L. Zang, Z. Yuan, H. Xu, B. Xu, Appl. Surf. Sci. 257, 4877 (2011)

    Article  CAS  Google Scholar 

  41. A. Wedi, D. Baither, G. Schmitz, Scr. Mater. 64, 689 (2011)

    Article  CAS  Google Scholar 

  42. J. Yang, P. Shen, Z. Yin, J. Sun, Q. Jiang, Mater. Lett. 64, 2454 (2010)

    Article  CAS  Google Scholar 

  43. Satyanarayan, K.N. Prabhu, in National Conference on Challenges in Research & Technology in the Coming Decades (CRT 2013) (Institution of Engineering and Technology, 2013), pp. 3.31–3.31

  44. H. Okamoto, M.E. Schlesinger, E.M. Mueller, ASM Handbook Volume 3: Alloy Phase Diagrams (ASM International, 2016)

  45. H.W. Lin, C.L. Lu, C.M. Liu, C. Chen, D. Chen, J.C. Kuo, K.N. Tu, Acta Mater. 61, 4910 (2013)

    Article  CAS  Google Scholar 

  46. H. Chi Won, J.G. Lee, S. Katsuaki, M. Hirotaro, J. Electron. Mater. 32, 52 (2003)

    Article  Google Scholar 

  47. N. Mookam, P. Tunthawiroon, K. Kanlayasiri, in IOP Conference Series: Materials Science and Engineering (2018)

  48. S.R. A. Idris, N. Farihan, H. Kahar, in MATEC Web of Conferences, vol. 74 (2016), pp. 1–3

  49. N. Mookam, K. Kanlayasiri, in MATEC Web of Conferences 192,(2018) ICEAST 2018 (2018), pp. 1–4

  50. T. An, F. Qin, Microelectron. Reliab. 54, 932 (2014)

    Article  CAS  Google Scholar 

  51. K.S. Kim, J.H. Kim, S.W. Han, Mater. Lett. 62, 1867 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express sincere gratitude to Faculty of Engineering of King Mongkut’s Institute of Technology Ladkrabang (KMITL) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannachai Kanlayasiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mookam, N., Kanlayasiri, K. Effects of substrate annealing on wettability and intermetallic compound formation in Sn–3.0Cu/Cu systems. J Mater Sci: Mater Electron 30, 12087–12099 (2019). https://doi.org/10.1007/s10854-019-01566-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01566-9

Navigation