Skip to main content
Log in

Electromagnetic shielding effectiveness and electrical conductivity of a thin silver layer deposited onto cellulose film via electroless plating

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A thin layer of silver was prepared on cellulose film (CF) surface via electroless plating to obtain high electromagnetic shielding effectiveness Ag/cellulose composite layer. The process is simple, efficient and low-cost. The developed film has a great advantage in electric conduction and electromagnetic interference (EMI) shielding. The identical deposit of thin silver layer was perfectly fabricated via the electroless plating on the CF surface. The fabricated thin silver layers were tested for electrical properties and EMI SE. The electrical and electromagnetic shielding properties of the thin silver layer were ideal when the activation concentration was 100 Mm (mmol/L). Herein, the resistance and conductivity of Ag/cellulose composite films can reach 0.35 Ω and 45 s/cm, respectively, and the EMI SE of Ag/cellulose composite films can be up to 67 dB ranging from 0.0003 to 3 GHz. The dielectric constant (ε′) of the Ag/cellulose composite film was between 6.5 and 7.5, which was stable throughout the test band ranging from 2 to 18 GHz. The permeability (µ′) of the Ag/cellulose composite film was around 1 ranging from 2 to 18 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Clayton, Introduction to Electromagnetic Compatibility (Willey, New York, 2006)

    Google Scholar 

  2. K. Rajendrakumar, G. Thilagavathi, Electromagnetic shielding effectiveness of copper/PET composite yarn fabrics. Indian J. Fibre Text. Res. 37(2), 133–137 (2012)

    CAS  Google Scholar 

  3. F. Shahzad, M. Alhabeb, C.B. Hatter et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016)

    Article  CAS  Google Scholar 

  4. H.J. Wu, G.L. Wu, L.D. Wang, Peculiar porous alpha-Fe2O3, gamma-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015)

    Article  CAS  Google Scholar 

  5. H.J. Wu, G.L. Wu, Y.Y. Ren, L. Yang, L.D. Wang, X.H. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids. J. Mater. Chem. C 3(29), 7677–7690 (2015)

    Article  CAS  Google Scholar 

  6. H.J. Wu, S.H. Qu, K.J. Lin, Y.C. Qing, L.D. Wang, Y.C. Fan, Q.H. Fu, F.L. Zhang, Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol. 333, 153–159 (2018)

    Article  CAS  Google Scholar 

  7. Z.R. Jia, K.J. Lin, G.L. Wu et al., Recent progresses of high-temperature microwave-absorbing materials. Nano 13(06), 18300050 (2018)

    Article  CAS  Google Scholar 

  8. D. Lan, M. Qin, R.S. Yang, S. Chen, H.J. Wu, Y.C. Fan, Q.H. Fu, F.L. Zhang, Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J. Colloid Interface Sci. 533, 481–491 (2019)

    Article  CAS  Google Scholar 

  9. Z.R. Jia, Z.G. Gao, D. Lan et al., Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite. Chin. Phys. B 27(11), 117806 (2018)

    Article  CAS  Google Scholar 

  10. Z.R. Jia, D. Lan, K.J. Lin, M. Qin, K.C. Kou, G.L. Wu, H.J. Wu, Progress in low-frequency microwave absorbing materials. J. Mater. Sci. 29(20), 17122–17136 (2018)

    CAS  Google Scholar 

  11. Mao-sheng Cao, Yong-Zhu Cai, Peng He, Jin-Cheng Shu, Wen-Qiang Cao, Jie Yuan, 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019)

    Article  CAS  Google Scholar 

  12. Mao-sheng Cao, Jin-Cheng Shu, Xi-Xi Wang, Xin Wang, Min Zhang, Hui-Jing Yang, Xiao-Yong Fang, Jie Yuan, Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency. Ann. Phys. 531, 1800390 (2019)

    Article  CAS  Google Scholar 

  13. Mao-sheng Cao, Xi-Xi Wang, Min Zhang, Jin-Cheng Shu, Wen-Qiang Cao, Hui-Jing Yang, Xiao-Yong Fang, Jie Yuan, Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Func. Mater. 29, 1807398 (2019)

    Article  CAS  Google Scholar 

  14. S. Geetha, K.K.S. Kumar, C.R.K. Rao, M. Vijayan, D.C. Trivedi, EMI shielding: method and materials—a review. J. Appl. Polym. Sci. 112(4), 2073–2086 (2009)

    Article  CAS  Google Scholar 

  15. P. Sittisart, M.M. Hyland, M.A. Hodgson et al., Preparation and characterization of electroless nickel-coated cellulose fibres. Wood Sci. Technol. 48(4), 841–853 (2014)

    Article  CAS  Google Scholar 

  16. T. Ueno, S. Takemura, M. Shimada, Y. Nishino, A. Higuchi, M. Suzuki, T. Okayama, Conductive pulp fiber sheet-prepared waste newspaper pulp fibers treated by electroless nickel plating and its electric field shielding effect. J. Mater. Cycles Waste Manage. 17(3), 490–495 (2015)

    Article  CAS  Google Scholar 

  17. T.W. Lee, S.E. Lee, Y.G. Jeong, Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers. ACS Appl. Mater. Interfaces. 8(20), 13123–13132 (2016)

    Article  CAS  Google Scholar 

  18. W. Chen, J. Wang, T. Wang, J.P. Wang, R.X. Xu, X.L. Yang, Electromagnetic interference shielding properties of electroless nickel-coated carbon fiber paper reinforced epoxy composites. J. Wuhan Univ. Technol. Mater. Sci. 29(6), 1165–1169 (2014)

    Article  CAS  Google Scholar 

  19. Y.C. Su, B.Y. Zhou, L.F. Liu, J.S. Lian, G.Y. Li, Electromagnetic shielding and corrosion resistance of electroless Ni–P and Ni–P–Cu coatings on polymer/carbon fiber composites. Polym. Compos. 36(5), 923–930 (2015)

    Article  CAS  Google Scholar 

  20. J.P. Li, S.H. Qi, M.Y. Zhang, Z.F. Wang, Thermal conductivity and electromagnetic shielding effectiveness of composites based on Ag-plating carbon fiber and epoxy. J. Appl. Polym. Sci. 132(33), 42306 (2015)

    Google Scholar 

  21. R. Wang, Y.Z. Wan, H. Fang et al., Nickel-plated carbon fiber continuous production process and its shielding composites. Acta Materiae Compositae Sinica 27(5), 19–23 (2010)

    Google Scholar 

  22. L.M. Tang, C. Weder, Cellulose whisker/epoxy resin nanocomposites. ACS Appl. Mater. Interfaces 2(11), 3396 (2010)

    Article  CAS  Google Scholar 

  23. M.N. Salimi, A.A. Sahraei, M. Baniassadi, K. Abrinia, M. Ehsani, Synergistic effect of carbon nanotubes and copper particles in an epoxy-based nanocomposite using electroless copper deposited carbon nanotubes: part I—Mechanical properties. J. Compos. Mater. 50(14), 1909–1920 (2015)

    Article  CAS  Google Scholar 

  24. D. Yu, W.Y. Li, W. Wang, J.J. Zhang, Preparation and properties of copper-silver complex plating on PET fabrics. Fibers Polym. 16(1), 23–30 (2015)

    Article  CAS  Google Scholar 

  25. D.X. Yan, H. Pang, B. Li et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Func. Mater. 25(4), 559–566 (2015)

    Article  CAS  Google Scholar 

  26. N.M. Abbasi, H.J. Yu, L. Wang et al., Preparation of silver nanowires and their application in conducting polymer nanocomposites. Mater. Chem. Phys. 166, 1–15 (2015)

    Article  CAS  Google Scholar 

  27. H.J. Duan, Y.D. Xu, D.X. Yan et al., Ultrahigh molecular weight polyethylene composites with segregated nickel conductive network for highly efficient electromagnetic interference shielding. Mater. Lett. 209, 353–356 (2017)

    Article  CAS  Google Scholar 

  28. F. Fang, Y.Q. Li, H.M. Xiao, N. Hu, S.Y. Fu, Layer-structured silver nanowire/polyaniline composite film as a high-performance X-band EMI shielding material. J. Mater. Chem. C 4(19), 4193–4203 (2016)

    Article  CAS  Google Scholar 

  29. M.J. Hu, J.F. Gao, Y.C. Dong et al., Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding. Langmuir 28(18), 7101–7106 (2012)

    Article  CAS  Google Scholar 

  30. W.L. Song, M.S. Cao, M.M. Lu, S. Bi, C.Y. Wang, J. Liu, J. Yuan, L.Z. Fan, Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014)

    Article  CAS  Google Scholar 

  31. H.B. Zhang, Q. Yan, W.G. Zheng, Z. He, Z.Z. Yu, Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces. 3(3), 918–924 (2011)

    Article  CAS  Google Scholar 

  32. Z.P. Chen, C. Xu, C.Q. Ma, W.C. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013)

    Article  CAS  Google Scholar 

  33. J.J. Ma, M.S. Zhan, K. Wang, Ultralightweight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces. 7(1), 563–576 (2015)

    Article  CAS  Google Scholar 

  34. J.N. Balaraju, P. Radhakrishnan, V. Ezhilselvi et al., Studies on electroless nickel polyalloy coatings over carbon fibers/CFRP composites. Surf. Coat. Technol. 302, 389–397 (2016)

    Article  CAS  Google Scholar 

  35. Y.W. Nam, J.H. Choi, W.J. Lee, C.G. Kim, Fabrication of a thin and lightweight microwave absorber containing Ni-coated glass fibers by electroless plating. Compos. Sci. Technol. 145, 165–172 (2017)

    Article  CAS  Google Scholar 

  36. F. Sato, M.S. Sarto, M.C. Larciprete, C. Sibilia, Transparent films for electromagnetic shielding of plastics. Rev. Adv. Mater. Sci. 5(4), 329–336 (2003)

    Google Scholar 

  37. C.J. Huang, T.C. Chang, Studies on the electromagnetic interference shielding effectiveness of metallized PVAc-AgNO3/PET conductive films. J. Appl. Polym. Sci. 91(1), 270–273 (2004)

    Article  CAS  Google Scholar 

  38. I. Prosycevas, J. Puiso, S. Tamulevicius, A. Juraitis, M. Andrulevicius, B. Cyziute, Growth of Ag films on polyethylene terephthalate (PET) deposited by electron beam. Thin Solid Films 495(1–2), 118–123 (2006)

    Article  CAS  Google Scholar 

  39. S. Ghosh, R. Yang, M. Kaumeyer et al., Fabrication of electrically conductive metal patterns at the surface of polymer films by microplasma-based direct writing. ACS Appl. Mater. Interfaces 6(5), 3099–3104 (2014)

    Article  CAS  Google Scholar 

  40. B. Huang, W.P. Gan, J. Zhou et al., Factors affecting the morphology of Pb-based glass frit coated with ag material prepared by electroless silver plating. J. Electron. Mater. 43(5), 1326–1334 (2014)

    Article  CAS  Google Scholar 

  41. Y.C. Qing, J.B. Su, Q.L. Wen, F. Luo, D.M. Zhu, W.C. Zhou, Enhanced dielectric and electromagnetic interference shielding properties of FeSiAl/Al2O3 ceramics by plasma spraying. J. Alloy. Compd. 651, 259–265 (2015)

    Article  CAS  Google Scholar 

  42. H.J. Oh, V.D. Dao, H.S. Choi, Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction. Appl. Surf. Sci. 435, 7–15 (2018)

    Article  CAS  Google Scholar 

  43. A.J.M. Mackus, M.J. Weber, N.F.W. Thissen et al., Atomic layer deposition of Pd and Pt nanoparticles for catalysis: on the mechanisms of nanoparticle formation. Nanotechnology 27(3), 034001 (2016)

    Article  CAS  Google Scholar 

  44. G. Wang, X.C. Ma, B.B. Huang et al., Controlled synthesis of Ag2O microcrystals with facet-dependent photocatalytic activities. J. Mater. Chem. 22(39), 21189–21194 (2012)

    Article  CAS  Google Scholar 

  45. W.L. Song, M.S. Cao, Z.L. Hou et al., High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 94(23), 233110 (2009)

    Article  CAS  Google Scholar 

  46. M.S. Cao, W.L. Song, Z.L. Hou et al., The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3), 788–796 (2010)

    Article  CAS  Google Scholar 

  47. B. Wen, M.S. Cao, Z.L. Hou et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013)

    Article  CAS  Google Scholar 

  48. J. Jung, H. Lee, I. Ha et al., Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl. Mater. Interfaces. 9(51), 44609–44616 (2017)

    Article  CAS  Google Scholar 

  49. K. Bernhard, Principles of Electromagnetic Compatibility (Artech House, Dedham, 1979)

    Google Scholar 

  50. Wen-Qiang Cao, Xi-Xi Wang, Jie Yuan, Wen-Zhong Wang, Mao-Sheng Cao, Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3(38), 10017–10022 (2015)

    Article  CAS  Google Scholar 

  51. C. Maosheng, W. Xixi, C. Wenqiang et al., Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14(29), 1800987 (2018)

    Article  CAS  Google Scholar 

  52. B. Zhao, B.B. Fan, Y.W. Xu et al., Preparation of honeycomb SnO2 foams and configuration-dependent microwave absorption features. ACS Appl. Mater. Interfaces. 7(47), 26217–26225 (2015)

    Article  CAS  Google Scholar 

  53. X. Wang, J.C. Shu, X.M. He et al., Green approach to conductive PEDOT:PSS decorating magnetic-graphene to recover conductivity for highly efficient absorption. ACS Sustain. Chem. Eng. 6(11), 14017–14025 (2018)

    Article  CAS  Google Scholar 

  54. Xi-Xi Wang, Jin-Chen Shu, Wen-Qiang Cao, Min Zhang, Jie Yuan, Mao-Sheng Cao, Eco-mimetic nanoarchitecture for green EMI shielding. Chem. Eng. J. 369, 1068–1077 (2019)

    Article  CAS  Google Scholar 

  55. F.Y. Pan, B. Liu, H.X. Hu et al., Preparation and photocatalytic performance of the rod-shaped Ni–NiO/TiO2 hollow composite structure based on metallization Cellulose fibers and TBOT. Vacuum 159, 1–8 (2019)

    Article  CAS  Google Scholar 

  56. B. Liu, Y.F. Pan, G.M. Sun, J.T. Huang, The preparation and characterization of the Ni–NiO/TiO2 hollow composite materials on micro-nano cellulose fibers. Vacuum 155, 553–558 (2018)

    Article  CAS  Google Scholar 

  57. Y.F. Pan, X. Wang, J.T. Hang, The preparation, characterization, and influence of multiple electroless nickel–phosphorus (Ni–P) composite coatings on poplar veneer. BioResources 11(1), 724–735 (2016)

    CAS  Google Scholar 

  58. Y. Wang, J.T. Huang, Mechanical performance and electromagnetic shielding effectiveness of composites based on Ag-plating Cellulose micro-nano fibers and epoxy. J. Polym. Eng. 37(8), 805–813 (2017)

    Article  CAS  Google Scholar 

  59. T.C. Guo, Y. Wang, J.T. Huang, Studies of electroless copper plating on poplar veneer. BioResources 11(3), 6920–6931 (2016)

    Article  CAS  Google Scholar 

  60. T.C. Guo, Y. Wang, J.T. Huang, The effect of pH on electroless Ni–Fe–P alloy plating on poplar veneer. BioResources 12(2), 3154–3165 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by Science and Technology Innovation Leading Project of Inner Mongolia Autonomous Region (Grant No. KCBJ2018013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jintian Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, G., Wang, Z. & Huang, J. Electromagnetic shielding effectiveness and electrical conductivity of a thin silver layer deposited onto cellulose film via electroless plating. J Mater Sci: Mater Electron 30, 12044–12053 (2019). https://doi.org/10.1007/s10854-019-01562-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01562-z

Navigation