Skip to main content
Log in

Top-gate In–Al–Zn–O thin film transistor based on organic poly(methyl methacrylate) dielectric layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we report a top-gate amorphous In–Al–Zn–O (a-IAZO) thin film transistor (TFT) based on dip-coated poly(methyl methacrylate) (PMMA) dielectric layer and investigate PMMA thickness influence on a-IAZO TFT performance. A thinner PMMA gate dielectric can cumulate more charges per unit area and induce more electron carriers, resulting in increasing of on-state current of TFT. Moreover, it is found that a TFT with the thinner PMMA gate dielectric contains less trap states at a-IAZO/PMMA interface due to decreased surface roughness with thinner PMMA dielectric, which is essential for reducing the capture of electron carriers in the process of electron transport. Therefore, the on/off current ratio (Ion/off), saturated mobility (μsat) and subthreshold gate swing (SS) of device improved with the PMMA thickness decreased from 610 to 280 nm. Furthermore, experimental results show that the PMMA thickness plays an important role on controlling the threshold voltage (Vth) and adjusting the operating mode of device, thus influencing on the power dissipation. Overall, the TFT with a 390-nm-thick PMMA dielectric layer exhibits the adequate operating mode (enhancement mode) and the high electrical performance (a high μsat of 21.42 cm2/Vs, a small SS of 0.46 V/decade, a close-to-zero Vth of 0.12 V, and Ion/off of more than104).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Normura, H. Ohta, A. Takagi, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004)

    Article  Google Scholar 

  2. S. Yang, D.-H. Cho, M.K. Ryu, S.-H.K. Park, C.-S. Hwang, J. Jang, J.K. Jeong, High-performance Al–Sn–Zn–In–O thin-film transistors: impact of passivation layer on device stability. IEEE Electron Device Lett. 31, 144–146 (2010)

    Article  Google Scholar 

  3. J.H. Jeon, Y.H. Hwang, B.S. Bae, H.L. Kwon, H.J. Kang, Addition of aluminum to solution processed conductive indium tin oxide thin film for an oxide thin film transistor. Appl. Phys. Lett. (2010). https://doi.org/10.1063/1.3442482

    Article  Google Scholar 

  4. D.C. Paine, B. Yaglioglu, Z. Beiley, S. Lee, Amorphous IZO-based transparent thin film transistors. Thin Solid Films 516, 5894–5898 (2008)

    Article  CAS  Google Scholar 

  5. W. Lim, Y.L. Wang, F. Ren, D.P. Norton, I.I. Kravchenko, J.M. Zavada, S.J. Pearton, Indium zinc oxide thin films deposited by sputtering at room temperature. Appl. Surf. Sci. 254, 2878–2881 (2008)

    Article  CAS  Google Scholar 

  6. J.I. Song, J.S. Park, H. Kim, Y.W. Heo, J.H. Lee, J.J. Kim, Transparent amorphous indium zinc oxide thin-film transistors fabricated at room temperature. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2430917

    Article  Google Scholar 

  7. W.W. Xia, G.D. Xia, G.S. Tu, X. Dong, S. Wang, R. Liu, Sol-gel processed high-k aluminum oxide dielectric films for fully solution-processed low-voltage thin-film transistors. Ceram. Int. 44, 9125–9131 (2018)

    Article  CAS  Google Scholar 

  8. J.Y. Kwon, J.S. Jung, K.S. Son, K.H. Lee, J.S. Park, T.S. Kim, J.S. Park, R. Choi, J.K. Jeong, B. Koo, S.Y. Lee, The impact of gate dielectric materials on the light-induced bias instability in Hf-In-Zn-O thin film transistor. Appl. Phys. Lett. (2010). https://doi.org/10.1063/1.3513400

    Article  Google Scholar 

  9. G. Jiang, A. Liu, G.X. Liu, C.D. Zhu, Y. Meng, B. Shin, E. Fortunato, R. Martins, F. Shan, Solution-processed high-k magnesium oxide dielectrics for low-voltage oxide thin-film transistors. Appl. Phys. Lett. 97, 183503-1–183503-3 (2010)

    Google Scholar 

  10. C.X. Fan, A. Liu, Y. Meng, Z.D. Guo, G.X. Liu, F.K. Shan, Solution-processed SrOx-gated oxide thin-film transistors and inverters. IEEE Trans. Electron Devices 64, 4137–4143 (2017)

    Article  CAS  Google Scholar 

  11. J. Kim, S. Choi, J.-W. Jo, S.K. Park, Y.-H. Kim, Solution-processed lanthanum-doped Al2O3 gate dielectrics for high-mobility metal-oxide thin-film transistors. Thin Solid Films 660, 814–818 (2018)

    Article  CAS  Google Scholar 

  12. J.B. Kim, C. Fuentes-Hernandez, B. Kippelen, High-performance InGaZnO thin-film transistors with high-k amorphous Ba0.5Sr0.5TiO3 gate insulator. Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.3054335

    Article  Google Scholar 

  13. M.R. Shijeesh, A.C. Saritha, M.K. Jayaraj, Investigations on the reasons for degradation of zinc tin oxide thin film transistor on exposure to air. Mat. Sci. Semicon. Proc. 74, 116–121 (2018)

    Article  CAS  Google Scholar 

  14. S.I.L. Kim, J.-S. Park, C.J. Kim, J.C. Park, I. Song, Y.S. Park, High reliable and manufacturable gallium indium zinc oxide thin-film transistors using the double layers as an active layer. J. Electrochem. Soc. 156, H184–H187 (2009)

    Article  CAS  Google Scholar 

  15. A. Facchetti, M.H. Yoon, T.J. Marks, Gate dielectrics for organic field-effect transistors: new opportunities for organic electronics. Adv. Mater. 17, 1705–1725 (2005)

    Article  CAS  Google Scholar 

  16. J.-A. Cheng, C.-S. Chuang, M.-N. Chang, Y.-C. Tsai, H.-P. Shieh, Controlable carrier density of pentacene field-effect transistors using polyacrylates as gate dielectrics. Org. Electron. 9, 1069–1075 (2008)

    Article  CAS  Google Scholar 

  17. H. Faber, M. Burkhardt, A. Jedaa, D. Kalblein, H. Klauk, M. Halik, Low-temperature solution-processed memory transistors based on zinc oxide nanoparticles. Adv. Mater. 21, 3099–3104 (2009)

    Article  CAS  Google Scholar 

  18. S. Bang, S. Lee, S. Jeon, S. Kwon, W. Jeong, H. Kim, I. Shin, H.J. Chang, H.-H. Park, H. Jeon, Al2O3 buffer in a ZnO thin film transistor with poly-4-vinylphenol dielectric. Semicond. Sci. Technol. (2009). https://doi.org/10.1088/0268-1242/24/2/025008

    Article  Google Scholar 

  19. H.F. Pu, G.F. Li, J.H. Feng, B.Y. Liu, Q. Zhang, Amorphous indium zinc oxide thin film transistors with poly-4-vinylphenol gate dielectric layers. Semicond. Sci. Technol. (2011). https://doi.org/10.1088/0268-1242/26/9/095004

    Article  Google Scholar 

  20. I. Karteri, S. Karatas, A.A. Al-Ghamdi, F. Yakuphanoglu, The electrical characteristics of thin film transistors with graphene oxide and organic insulators. Synth. Met. 199, 241–245 (2015)

    Article  CAS  Google Scholar 

  21. C.J. Chiu, Z.W. Pei, S.P. Chang, S.J. Chang, Influence of weight ratio of poly(4-vinylphenol) insulator on electronic properties of InGaZnO thin-film transistors. J. Nanomater. 2012, 1–7 (2012)

    Article  Google Scholar 

  22. H.-C. Lai, B.-J. Tzeng, Z. Pei, C.-M. Chen, C.-J. Huang, Ultra-flexible amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistor. SID Symp. Dig. Tech. Pap. 43, 764–767 (2012)

    Article  Google Scholar 

  23. S.-W. Jung, J.-S. Choi, J.H. Park, J.B. Koo, C.W. Park, B.S. Na, J.-Y. Oh, S.C. Lim, S.S. Lee, H.Y. Chu, Oxide semiconductor-based flexible organic/inorganic hybrid thin-film transistors fabricated on polydimethylsiloxane elastomer. J. Nanosci. Nanotechnol. 16, 2752–2755 (2016)

    Article  CAS  Google Scholar 

  24. Y.H. Zhang, M.Z. Xia, L.H. Li, D.X. Long, Review of flexible and transparent thin-film transistors based on zinc oxide and related materials. Chin. Phys. B 26, 1–17 (2017)

    Google Scholar 

  25. N.B. Ukah, J. Granstrom, R.R. Sanganna Gari, G.M. King, S. Guha, Low-operating voltage and stable organic field-effect transistors with poly(methyl methacrylate) gate dielectric solution deposited from a high dipole moment solvent. Appl. Phys. Lett. (2011). https://doi.org/10.1063/1.3669696

    Article  Google Scholar 

  26. M. Harris, H.A. Macleod, S. Ogura, E. Pelletier, B. Vidal, The relationship between optical inhomogeneity and film structure. Thin Solid Films 57, 173–178 (1979)

    Article  CAS  Google Scholar 

  27. T.-S. Huang, Y.-K. Su, P.-C. Wang, Study of organic thin film transistor with polymethylmethacrylate as a dielectric layer. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2775333

    Article  Google Scholar 

  28. V.K. Singh, B. Mazhari, Impact of scaling of dielectric thickness on mobility in top-contact pentacene organic thin film transistors. J. Appl. Phys. (2012). https://doi.org/10.1063/1.3681809

    Article  Google Scholar 

  29. G.W. Hyung, J. Park, J.-X. Wang, H.W. Lee, Z.-H. Li, J.-R. Koo, S.J. Kwon, E.-S. Cho, W.Y. Kim, Y.K. Kim, Amorphous indium gallium zinc oxide thin-film transistors with a low-temperature polymeric gate dielectric on a flexible substrate. Jpn. J. Appl. Phys. (2013). https://doi.org/10.7567/JJAP.52.071102

    Article  Google Scholar 

  30. W. Ye, J.P. Deng, X.F. Wang, L. Cui, Effect of thickness of Bi1.5Zn1.0Nb1.5O7 gate insulator on performance of ZnO based thin film transistors. Appl. Surf. Sci. 390, 831–837 (2016)

    Article  CAS  Google Scholar 

  31. X.W. Ding, J.H. Zhang, W.M. Shi, H. Ding, H. Zhang, J. Li, X.Y. Jiang, Z.L. Zhang, C.Y. Fu, Effect of gate insulator thickness on device performance of InGaZnO thin-film transistors. Mat. Sci. Semicon. Proc. 29, 326–330 (2015)

    Article  CAS  Google Scholar 

  32. A.H. Chen, H.T. Cao, H.Z. Zhang, L.Y. Liang, Z.M. Liu, Z. Yu, Q. Wan, Influence of the channel layer thickness on electrical properties of indium zinc oxide thin-film transistor. Microelectron. Eng. 87, 2019–2023 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (Grant number 61504031), Science and Technology Foundation of GuiZhou Province, China [Grant number LH(2014)7389], Youth’s growth Foundation of Education Department of GuiZhou Province, China [Grant number (2016)155], Special and Key Laboratory of Guizhou Provincial Higher Education for Photoelectric information Analysis and Processing, China [Grant number KY(2016)003]. We thank Prof. Q. Zhang for valuable suggestions and he guidance for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Yue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, L., Meng, F., Ren, D. et al. Top-gate In–Al–Zn–O thin film transistor based on organic poly(methyl methacrylate) dielectric layer. J Mater Sci: Mater Electron 30, 11976–11983 (2019). https://doi.org/10.1007/s10854-019-01548-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01548-x

Navigation