Advertisement

Hole-transporting material based on spirobifluorene unit with perfect amorphous and high stability for efficient OLEDs

  • Qiannan Li
  • Hongli Liu
  • Wei Sun
  • Shirong Wang
  • Xiaofei DongEmail author
  • Lei Wang
  • Xianggao LiEmail author
Article
  • 58 Downloads

Abstract

Hole-transporting materials (HTMs) capable of forming thermally stable amorphous film and possessing high electrochemical stability play an important role in organic light-emitting diodes (OLEDs), which can enhance the device performance. Herein, spirobifluorene-based HTM N-([1,1′-biphenyl]-2-yl)-N-(9,9-dimethyl-9H-fluoren-2-yl)-9,9′-spirobifluoren-2-amine (SFAF), employing fluorene-contained arylamine as the hole transporting unit, was synthesized, and the comprehensive properties of material were systematically investigated. Owing to the highly twisted spiro conformation, the SFAF exhibited a high glass transition temperature of 140 °C and a high thermal decomposition temperature of 402 °C. Moreover, a stably and homogeneously amorphous SFAF film was formed by increasing the treatment temperature up to 140 °C for 12 h and a smooth surface film was characterized by the atomic force microscope. In addition, the compound presented excellent electrochemical stability with nearly identical cyclic voltammetry curves during the 100 cycles. Green fluorescent OLED based on SFAF as the hole-transporting layer showed a satisfactory device performance. The SFAF with high stability was also applied as HTM in phosphorescence device, which exhibited a turn-on voltage of 2.2 V, a maximum brightness of 191127 cd m−2 and the maximum current efficiency of 63.80 cd A−1. This results indicate that SFAF is a great promising and potential hole-transporting material for highly efficient optoelectronic devices.

Notes

Acknowledgements

This work is supported by the National Key Research and Development Program of China (2016YFB0401303), the National Science Foundation for Young Scientists of China (No. 61804106) and the Key Projects in Natural Science Foundation of Tianjin (16JCZDJC37100). The calculation in this work was supported by high performance computing center of Tianjin University, China.

Supplementary material

10854_2019_1493_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (DOC 1103 kb)

References

  1. 1.
    C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913–915 (1987)CrossRefGoogle Scholar
  2. 2.
    V. Promarak, M. Ichikawa, T. Sudyoadsuk, S. Saengsuwan, S. Jungsuttiwong, T. Keawin, Thin Solid Films 516, 2881–2888 (2008)CrossRefGoogle Scholar
  3. 3.
    N. Prachumrak, S. Pansay, S. Namuangruk, T. Kaewin, S. Jungsuttiwong, T. Sudyoadsuk, V. Promarak, Eur. J. Org. Chem. 2013, 6619–6628 (2013)CrossRefGoogle Scholar
  4. 4.
    C. Poriel, B.R. Joelle, J. Mater. Chem. C 5, 3869–3897 (2017)CrossRefGoogle Scholar
  5. 5.
    Z. Zhong, X. Wang, T. Guo, J. Cui, L. Ying, J. Peng, Y. Cao, Org. Electron. 53, 35–42 (2018)CrossRefGoogle Scholar
  6. 6.
    S. Chen, S. Jiang, H. Yu, Chem. Phys. Lett. 674, 109–114 (2017)CrossRefGoogle Scholar
  7. 7.
    P. Wu, W. Song, Z. Xia, Y. Chen, G. Tian, J. Huang, J. Su, Dyes Pigments 162, 153–159 (2019)CrossRefGoogle Scholar
  8. 8.
    P. Wu, G. Tian, M. Hu, H. Lian, Q. Dong, W. Liang, J. Huang, J. Su, Tetrahedron 73, 4610–4615 (2017)CrossRefGoogle Scholar
  9. 9.
    R. Braveenth, I.J. Bae, J.H. Han, W. Qiong, G. Seon, K. Raagulan, K. Yang, Y.H. Park, M. Kim, K.Y. Chai, Molecules 23, 713–724 (2018)CrossRefGoogle Scholar
  10. 10.
    Q. Fang, B. Xu, B. Jiang, H. Fu, W. Zhu, X. Jiang, Z. Zhang, Synth. Met. 155, 206–210 (2005)CrossRefGoogle Scholar
  11. 11.
    R. Braveenth, I.J. Bae, Y. Wang, S. Kim, M. Kim, K.Y. Chai, Appl. Sci. 8, 1168 (2018)CrossRefGoogle Scholar
  12. 12.
    S. Zhang, L.S. Xue, Y.M. Jing, X. Liu, G.Z. Lu, X. Liang, H.Y. Li, Y.X. Zheng, J.L. Zuo, Dyes Pigments 118, 1–8 (2015)CrossRefGoogle Scholar
  13. 13.
    P.C. Jian, H. Tanabe, X.C. Li, T. Thoms, Y. Okamura, K. Ueno, Synth. Met. 132, 173–176 (2003)CrossRefGoogle Scholar
  14. 14.
    G. Deng, Q. Feng, M. Yang, Q. Wang, H. Xu, J. Liu, S. Bo, X.L. Zhang, Z.H. Li, Mater. Lett. 193, 112–114 (2017)CrossRefGoogle Scholar
  15. 15.
    Z. Yin, R. Liu, C. Li, T. Masayuki, C. Liu, X. Jin, H. Zhu, Dyes Pigments 122, 59–65 (2015)CrossRefGoogle Scholar
  16. 16.
    T.P. Saragi, T. Spehr, A. Siebert, T. Fuhrmannlieker, J. Salbeck, Chem. Rev. 107, 1011–1065 (2007)CrossRefGoogle Scholar
  17. 17.
    W.L. Yu, J. Pei, W. Huang, A.J. Heeger, Adv. Mater. 12, 828–831 (2000)CrossRefGoogle Scholar
  18. 18.
    S. Kumar, C.C. An, S. Sahoo, R. Griniene, D. Volyniuk, J.V. Grazulevicius, S. Grigalevicius, J.H. Jou, J. Mater. Chem. C 5, 9854–9864 (2017)CrossRefGoogle Scholar
  19. 19.
    X. Liu, X. Tang, D. Zhao, B. Song, L. Ding, J. Fan, L. Liao, Org. Electron. 61, 70–77 (2018)CrossRefGoogle Scholar
  20. 20.
    R. Braveenth, H.W. Bae, Q.P. Nguyen, H.M. Ko, C.H. Lee, H.J. Kim, J.H. Kwon, K.Y. Chai, Molecules 22, 464–474 (2017)CrossRefGoogle Scholar
  21. 21.
    F. Wu, C. Shu, T. Wang, E.W. Diau, C. Chien, C. Chuen, Y. Tao, Synth. Met. 151, 285–292 (2005)CrossRefGoogle Scholar
  22. 22.
    Z. Chu, D. Wang, C. Zhang, F. Wang, H. Wu, Z. Lv, S. Hou, X. Fan, D. Zou, Synth. Met. 162, 614–620 (2012)CrossRefGoogle Scholar
  23. 23.
    Y.L. Liao, W.Y. Hung, T.H. Hou, C.Y. Lin, K.T. Wong, Chem. Mater. 19, 6350–6357 (2007)CrossRefGoogle Scholar
  24. 24.
    X. Liang, K. Wang, R. Zhang, K. Li, X. Lu, K. Guo, H. Wang, Y.Q. Miao, Z.Q. Wang, Dyes Pigments 139, 764–771 (2017)CrossRefGoogle Scholar
  25. 25.
    Z. Jiang, Z. Liu, C. Yang, C. Zhong, J. Qin, G. Yu, Y. Liu, Adv. Funct. Mater. 19, 3987–3995 (2009)CrossRefGoogle Scholar
  26. 26.
    F. Peng, T. Guo, L. Ying, W. Yang, J. Peng, Y. Cao, Org. Electron. 48, 118–126 (2017)CrossRefGoogle Scholar
  27. 27.
    H. Chen, W. Liang, Y. Chen, G. Tian, Q. Dong, J. Huang, J. Su, Rsc. Adv. 5, 70211–70219 (2015)CrossRefGoogle Scholar
  28. 28.
    X. Ma, S. Wang, X. Li, Y. Xiao, Org. Electron. 15, 1876–1883 (2014)CrossRefGoogle Scholar
  29. 29.
    F. Wang, X. Qiao, T. Xiong, D. Ma, Org. Electron. 9, 985–993 (2008)CrossRefGoogle Scholar
  30. 30.
    J. Cui, Q. Huang, J. Veinot, H. Yan, Q. Wang, G. Hutchison, A. Richter, G. Evmenenko, P. Dutta, T. Marks, Langmuir 18, 9958–9970 (2015)CrossRefGoogle Scholar
  31. 31.
    M.Y. Bian, D.D. Zhang, Y.X. Wang, Y.H. Chung, Y. Liu, H. Ting, L. Duan, Z.J. Chen, Z.Q. Bian, Z.W. Liu, L.X. Xiao, Adv. Funct. Mater. 28, 1800429 (2018)CrossRefGoogle Scholar
  32. 32.
    Q. Dong, H. Lian, Z. Gao, Z. Guo, N. Xiang, Z. Zhong, H. Guo, J. Huang, W.Y. Wong, Dyes Pigments 137, 84–90 (2017)CrossRefGoogle Scholar
  33. 33.
    S. Thiery, D. Tondelier, C. Declairieux, G. Seo, B. Geffroy, O. Jeannin, J. Rault-Berthelot, R. Métivier, C. Poriel, J. Mater. Chem. C 2, 4156–4166 (2014)CrossRefGoogle Scholar
  34. 34.
    H. Zhao, X. Tao, P. Wang, Y. Ren, J. Yang, Y. Yan, C. Yuan, H. Liu, D. Zou, M. Jiang, Org. Electron. 8, 673–682 (2007)CrossRefGoogle Scholar
  35. 35.
    Y. Tao, C. Yang, J. Qin, Chem. Soc. Rev. 40, 2943–2970 (2011)CrossRefGoogle Scholar
  36. 36.
    S.O. Jeon, J.Y. Lee, J. Mater. Chem. C 22, 10537–10541 (2012)CrossRefGoogle Scholar
  37. 37.
    S. Dong, C. Gao, X. Yuan, L. Cui, Z. Jiang, S. Lee, L. Liao, Org. Electron. 14, 902–908 (2013)CrossRefGoogle Scholar
  38. 38.
    L. Vacareanu, M. Grigoras, J. Appl. Electrochem. 40, 1967–1975 (2010)CrossRefGoogle Scholar
  39. 39.
    J. Samik, M.J. Narasimha, J. Mater. Chem. C 6, 8280–8325 (2018)Google Scholar
  40. 40.
    H. Chen, C. Gao, Z. Jiang, L. Zhang, L. Cui, S. Ji, L. Liao, Dyes Pigments 107, 15–20 (2014)CrossRefGoogle Scholar
  41. 41.
    S.C. Tse, K.C. Kwok, S.K. So, Appl. Phys. Lett. 89, 262102–262104 (2006)CrossRefGoogle Scholar
  42. 42.
    E. Angioni, M. Chapran, K. Ivaniuk, N. Kostiv, V. Cherpak, P. Stakhira, A. Lazauskas, S. Tamulevicius, D. Volyniuk, N.J. Findlay, T. Tuttle, J.V. Grazulevicius, P.J. Skabara, J. Mater. Chem. C 4, 3851–3856 (2016)CrossRefGoogle Scholar
  43. 43.
    S.J. Su, T. Chiba, T. Takeda, J. Kid, Adv. Mater. 11, 2125–2130 (2008)CrossRefGoogle Scholar
  44. 44.
    H.D. Sun, Y.H. Chen, L.P. Zhu, Q.X. Guo, D.Z. Yang, J.S. Chen, D.G. Ma, Adv. Electron. Mater. 1, 1500176–1500181 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.Collaborative Innovation Center of Chemical Science and EngineeringTianjinChina
  3. 3.State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhouChina

Personalised recommendations