Formation of Ag3PO4/AgBr composites with Z-scheme configuration by an in situ strategy and their superior photocatalytic activity with excellent anti-photocorrosion performance

  • Jiajia Zhuang
  • Jinsong LiuEmail author
  • Zhengying Wu
  • Ziquan Li
  • Kongjun Zhu
  • Kang Yan
  • Yuan Xu
  • Yanfang Huang
  • Zixia Lin


A novel Ag3PO4/AgBr composite with Z-Scheme structure was constructed and synthesized via a simple in situ ion-exchange strategy on the surface of Ag3PO4 tetrahedra in an alkaline environment. The as-prepared Ag3PO4/AgBr composite has an intimate contact interface and exhibited enhanced visible-light photocatalytic activity, accompanied by superior stability toward degradation of methylene blue (MB) in aqueous solution. Also, a variety of pollutants can be degraded without selectivity, and the degradation efficiency was over 96%. Changes in the bandgap and the detailed degradation mechanism of the Ag3PO4/AgBr composite were analyzed and revealed using characterization analysis, theoretical calculations, and further designed experiments. Sufficient interfacial contact between Ag3PO4 and AgBr was favorable for transferring carriers and lengthening the lifetime of the Z-Scheme system, which simultaneously inhibit photocorrosion and maintain a high degradation rate. The trapping experiments indicate that h+ is a dominant reactive species for the degradation of MB. This Ag3PO4/AgBr photocatalyst with Z-Scheme structure shows great potential for replication and large scale impact on the environmental purification of organic pollutants.



This work was supported by the Fundamental Research Funds for the Central Universities (No. NS2017038), the National Nature Science Foundation of China (NSFC No. 51672130), Natural Science Foundation (NSF) of Jiangsu Province (BK20151198), and Science and Technology Development Project of Suzhou (SYG201818).

Supplementary material

10854_2019_1485_MOESM1_ESM.pdf (537 kb)
Supplementary material 1 (PDF 537 kb)


  1. 1.
    D.J. Martin, G. Liu, S.J. Moniz, Y. Bi, A.M. Beale, J. Ye, Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective. J. Chem. Soc. Rev. 44, 7808–7828 (2015)CrossRefGoogle Scholar
  2. 2.
    Y.H. Xiao, X.H. Song, Z. Liu, R.P. Li, X.R. Zhao, Y.P. Huang, Photocatalytic removal of cefazolin using Ag3PO4/BiOBr under visible light and optimization of parameters by response surface methodology. J. Ind. Eng. Chem. 45, 248–256 (2017)CrossRefGoogle Scholar
  3. 3.
    S. Xiao, F. Bi, L. Zhao, L. Wang, G. Gai, Multi-layer ZnO assembled microspheres, microstars and microflowers with high photocatalytic performance. J. Mater. Sci. 28, 7778–7783 (2017)Google Scholar
  4. 4.
    B. Feng, Z. Wu, J. Liu, K. Zhu, Z. Li, X. Jin, Y. Hou, Q. Xi, M. Cong, P.C. Liu, Q. Gu, Combination of ultrafast dye-sensitized-assisted electron transfer process and novel Z-scheme system: AgBr nanoparticles interspersed MoO3 nanobelts for enhancing photocatalytic performance of RhB. Appl. Catal. B 206, 242–251 (2017)CrossRefGoogle Scholar
  5. 5.
    J. Liu, B. Wang, Z. Li, Z. Wu, K. Zhu, J. Zhuang, Q. Xi, Y. Hou, J. Chen, M. Cong, J. Li, G. Qian, Z. Lin, Photo-Fenton reaction and H2O2 enhanced photocatalytic activity of α-Fe2O3 nanoparticles obtained by a simple decomposition route. J. Alloys Compd. 771, 398–405 (2019)CrossRefGoogle Scholar
  6. 6.
    Q. Liang, W. Ma, Y. Shi, Z. Li, X. Yang, Hierarchical Ag3PO4 porous microcubes with enhanced photocatalytic properties synthesized with the assistance of trisodium citrate. CrystEngComm 14, 2966–2973 (2012)CrossRefGoogle Scholar
  7. 7.
    Y. Hou, J. Liu, Z. Li, Z. Wu, K. Zhu, Q. Xi, J. Zhuang, J. Chen, G. Qian, M. Cong, Construction of novel BiOCl/MoS2 nanocomposites with Z-scheme structure for enhanced photocatalytic activity. Mater. Lett. 218, 110–114 (2018)CrossRefGoogle Scholar
  8. 8.
    R. Dadigala, R. Bandi, B.R. Gangapuram, V. Guttena, Carbon dots and Ag nanoparticles decorated g-C3N4 nanosheets for enhanced organic pollutants degradation under sunlight irradiation. J. Photochem. Photobiol. A 342, 42–52 (2017)CrossRefGoogle Scholar
  9. 9.
    R. Dadigala, B.R. Gangapuram, R. Bandi, A. Dasari, V. Guttena, Synthesis and characterization of C-TiO2/FeTiO3 and CQD/C-TiO2/FeTiO3 photocatalysts with enhanced photocatalytic activities under sunlight irradiation. Acta Metall. Sin. 29(1), 17–27 (2016)CrossRefGoogle Scholar
  10. 10.
    Z.G. Yi, J.H. Ye, N. Kikugawa, T. Kako, S.X. Ouyang, H. Stuart-Williams, H. Yang, J.Y. Cao, W.J. Luo, Z.S. Li, Y. Liu, R.L. Withers, An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater. 9, 559–564 (2010)CrossRefGoogle Scholar
  11. 11.
    D.J. Martin, N. Umezawa, X. Chen, J. Ye, J. Tang, Facet engineered Ag3PO4 for efficient water photooxidation. Energy Environ. Sci. 6, 3380–3386 (2013)CrossRefGoogle Scholar
  12. 12.
    X.J. Chen, Y.Z. Dai, X.Y. Wang, Methods and mechanism for improvement of photocatalytic activity and stability of Ag3PO4: a review. J. Alloys Compd. 649, 910–932 (2015)CrossRefGoogle Scholar
  13. 13.
    Y. Luo, N. Xu, X.M. Liu, L.X. Yang, H.M. Wu, Y. Qin, Photoactivity enhanced and photo-corrosion inhibited Ag3PO4/ZnO visible light photocatalyst for the degradation of rhodamine. Energy Environ. Focus. 4, 121–127 (2015)CrossRefGoogle Scholar
  14. 14.
    Z. Jiao, Y. Zhang, H. Yu, G. Lu, J. Ye, Y. Bi, Concave trisoctahedral Ag3PO4 microcrystals with high-index facets and enhanced photocatalytic properties. Chem. Commun. 49, 636–638 (2013)CrossRefGoogle Scholar
  15. 15.
    B. Zheng, X. Wang, C. Liu, K. Tan, Z. Xie, L. Zheng, High-efficiently visible light-responsive photocatalysts: Ag3PO4 tetrahedral microcrystals with exposed 111 facets of high surface energy. J. Mater. Chem. A. 1, 12635–12640 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Zhang, H. Tian, S.J. Zhang, X. Wu, L. Song, J.Y. Ye, Q. Wei, Enhanced sonocatalytic activity, kinetic analysis, and sonocatalytic mechanism for silver phosphate by Br modifying with ionic liquids. J. Am. Ceram. Soc. 96, 3536–3543 (2013)CrossRefGoogle Scholar
  17. 17.
    J. Zhang, K. Yu, Y. Yu, L. Lou, Z. Yang, J. Yang, S. Liu, Highly effective and stable Ag3PO4/WO3 photocatalysts for visible light degradation of organic dyes. J. Mol. Catal. A-Chem. 391, 12–18 (2014)CrossRefGoogle Scholar
  18. 18.
    C. Li, P. Zhang, R. Lv, J. Lu, T. Wang, S. Wang, H. Wang, J. Gong, Selective Deposition of Ag3PO4 on Monoclinic BiVO4(040) for Highly Efficient Photocatalysis. Small 9, 3951–3956 (2013)CrossRefGoogle Scholar
  19. 19.
    S. Wu, H. Zheng, Y. Wu, W. Lin, T. Xu, M. Guan, Hydrothermal synthesis and visible light photocatalytic activity enhancement of BiPO4/Ag3PO4 composites for degradation of typical dyes. Ceram. Int. 40, 14613–14620 (2014)CrossRefGoogle Scholar
  20. 20.
    R. Dadigala, R. Bandi, B.R. Gangapuram, V. Guttena, Construction of in situ self-assembled FeWO4/g-C3N4 nanosheet heterostructured z-scheme photocatalysts for enhanced photocatalytic degradation of rhodamine B and tetracycline. Nanoscale Adv. 1, 322–333 (2019)CrossRefGoogle Scholar
  21. 21.
    R. Dadigala, R. Bandi, B.R. Gangapuram, A. Dasaria, H.H. Belay, V. Guttena, Fabrication of novel 1D/2D V2O5/g-C3N4 composites as Z-scheme photocatalysts for CR degradation and Cr(VI) reduction under sunlight irradiation. J. Environ. Chem. Eng. 7, 102822 (2019)CrossRefGoogle Scholar
  22. 22.
    X.F. Yang, H. Tang, J.S. Xu, M. Antonietti, M. Shalom, Silver phosphate/graphitic carbon nitride as an efficient photocatalytic tandem system for oxygen evolution. Chemsuschem 8, 1350–1358 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Li, X. Gu, Y. Zhao, Y. Qiang, S. Zhang, M. Sui, Enhanced visible-light photocatalytic activity and stability by incorporating a small amount of MoS2 into Ag3PO4 microcrystals. J. Mater. Sci. 27, 386–392 (2016)Google Scholar
  24. 24.
    X. Chen, R. Li, X. Pan, X. Huang, Z. Yi, Fabrication of In2O3-Ag-Ag3PO4 composites with Z-scheme configuration for photocatalytic ethylene degradation under visible light irradiation. Chem. Eng. J. 320, 644–652 (2017)CrossRefGoogle Scholar
  25. 25.
    J. Wang, H. Chen, L. Tang, G. Zeng, Y. Liu, M. Yan, Y. Deng, H. Feng, J. Yu, L. Wang, Antibiotic removal from water: a highly efficient silver phosphate-based Z-scheme photocatalytic system under natural solar light. Sci. Total Environ. 639, 1462–1470 (2018)CrossRefGoogle Scholar
  26. 26.
    P. Amornpitoksuk, S. Suwanboon, Photocatalytic degradation of dyes by AgBr/Ag3PO4 and the ecotoxicities of their degraded products. Chin. J. Catal. 37, 711–719 (2016)CrossRefGoogle Scholar
  27. 27.
    H. Katsumata, T. Hayashi, M. Taniguchi, T. Suzuki, S. Kaneco, Highly efficient visible-light driven AgBr/Ag3PO4 hybrid photocatalysts with enhanced photocatalytic activity. Mater. Sci. Semicond. Process. 25, 68–75 (2014)CrossRefGoogle Scholar
  28. 28.
    B. Wang, X. Gu, Y. Zhao, Y. Qiang, A comparable study on the photocatalytic activities of Ag3PO4, AgBr and AgBr/Ag3PO4 hybrid microstructures. Appl. Surf. Sci. 283, 396–401 (2013)CrossRefGoogle Scholar
  29. 29.
    Y. Bi, H. Hu, S. Ouyang, Z. Jiao, G. Lu, J. Ye, Selective growth of metallic Ag nanocrystals on Ag3PO4 submicro-cubes for photocatalytic applications. Chem. Eur. J. 18, 14272–14275 (2012)CrossRefGoogle Scholar
  30. 30.
    J. Liu, K. Zhu, B. Sheng, Z. Li, G. Tai, J. Qiu, J. Wang, J. Chen, Y. You, Q. Gu, P. Liu, Low-temperature solid-state synthesis and optical properties of ZnO/CdS nanocomposites. J. Alloys Compd. 618, 67–72 (2015)CrossRefGoogle Scholar
  31. 31.
    W. Wang, J. Wang, Z. Wang, X. Wei, L. Liu, Q. Ren, W. Gao, Y. Liang, H. Shi, p-n junction CuO/BiVO4 heterogeneous nanostructures: synthesis and highly efficient visible-light photocatalytic performance. Dalton Trans. 43, 6735–6743 (2014)CrossRefGoogle Scholar
  32. 32.
    T. Shoeib, R.K. Milburn, G.K. Koyanagi, V.V. Lavrov, D.K. Bohme, K.W.M. Siu, A.C. Hopkinson, A study of complexes Mg (NH3)nand Ag (NH3)n+, where n = 1–8: competition between direct coordination and solvation through hydrogen bonding. Int. J. Mass Spectrom. 201, 87 (2000)CrossRefGoogle Scholar
  33. 33.
    V.G. Pol, D.N. Srivastava, O. Palchik, V. Palchik, M.A. Slifkin, A.M. Weiss, A. Gedanken, Sonochemical deposition of silver nanoparticles on silica spheres. Langmuir 18, 3352–3357 (2002)CrossRefGoogle Scholar
  34. 34.
    R. Li, X. Song, Y. Huang, Y. Fang, M. Jia, W. Ma, Visible-light photocatalytic degradation of azo dyes in water by Ag3PO4: an unusual dependency between adsorption and the degradation rate on pH value. J. Mol. Catal. A 421, 57 (2016)CrossRefGoogle Scholar
  35. 35.
    A. Asfaram, M. Ghaedi, S. Hajati, A. Goudarzi, A.A. Bazrafshan, Simultaneous ultrasound-assisted ternary adsorption of dyes onto copper-doped zinc sulfide nanoparticles loaded on activated carbon: optimization by response surface methodology. Spectrochim. Acta A. 145, 203–212 (2015)CrossRefGoogle Scholar
  36. 36.
    L.G. Devi, B.N. Murthy, S.G. Kumar, Heterogeneous photo catalytic degradation of anionic and cationic dyes over TiO2 and TiO2 doped with Mo6+ ions under solar light: correlation of dye structure and its adsorptive tendency on the degradation rate. Chemosphere 76, 1163–1166 (2009)CrossRefGoogle Scholar
  37. 37.
    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B. 57, 1505–1509 (1998)CrossRefGoogle Scholar
  38. 38.
    A. Walsh, J.L. Da Silva, S.H. Wei, Theoretical description of carrier mediated magnetism in cobalt doped ZnO. Phys. Rev. Lett. 100(25), 256401 (2008)CrossRefGoogle Scholar
  39. 39.
    S.G. Park, B. Magyari-Kope, Y. Nishi, Electronic correlation effects in reduced rutile TiO2 within the LDA + U method. Phys. Rev. B 82, 115109 (2010)CrossRefGoogle Scholar
  40. 40.
    J.J. Liu, X.L. Fu, S.F. Chen, Y.F. Zhu, Electronic structure and optical properties of Ag3PO4 photocatalyst calculated by hybrid density functional method. Appl. Phys. Lett. 99, 191903 (2011)CrossRefGoogle Scholar
  41. 41.
    B. Tian, R. Dong, J. Zhang, S. Bao, F. Yang, J. Zhang, Sandwich-structured AgCl@Ag@TiO2 with excellent visible-light photocatalytic activity for organic pollutant degradation and E. coli K12 inactivation. Appl. Catal. B 58, 76–84 (2014)CrossRefGoogle Scholar
  42. 42.
    Y. Yan, H. Guan, S. Liu, R. Jiang, Ag3PO4/Fe2O3 composite photocatalysts with an n-n heterojunction semiconductor structure under visible-light irradiation. Ceram. Int. 40, 9095–9100 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jiajia Zhuang
    • 1
  • Jinsong Liu
    • 1
    • 2
    Email author
  • Zhengying Wu
    • 3
  • Ziquan Li
    • 4
  • Kongjun Zhu
    • 2
  • Kang Yan
    • 2
  • Yuan Xu
    • 2
  • Yanfang Huang
    • 1
  • Zixia Lin
    • 5
  1. 1.Department of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjingChina
  3. 3.Laboratory for Environment Functional MaterialsSuzhou University of Science and TechnologySuzhouChina
  4. 4.Institute of Advanced MaterialsNanjing University of Posts and TelecommunicationsNanjingChina
  5. 5.Testing Center of Yangzhou UniversityYangzhou UniversityYangzhouChina

Personalised recommendations