Microwave-assisted synthesis of FexZn1−xO nanoparticles for use in MEH-PPV nanocomposites and their application in polymer light-emitting diodes


A one-step microwave-assisted polyol method was used to fabricate FexZn1−xO (x = 0.01, 0.05, 0.10) nanoparticles. Zinc acetate dihydrate, iron (III) acetylacetonate, oleic acid and diethylene glycol were placed in a Teflon-lined reaction vessel. The reaction mixture was heated up to 250 °C for 15 min in a microwave reactor. The surface modification with oleic acid prevented agglomeration of the nanoparticles. The X-ray diffraction analysis revealed characteristics wurtzite hexagonal structure of ZnO and successful incorporation of the Fe dopant into the host crystal lattice. Doping of ZnO by Fe led to bandgap modification as estimated by Tauc plot. The as-prepared nanopowders were dispersed in toluene and mixed with a poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) polymer to make stable homogenous dispersions. Then, the FexZn1−xO/MEH-PPV nanocomposite thin films were prepared by spin coating and used as thin active layers in polymer light-emitting diodes. The thickness of deposited FexZn1−xO/MEH-PPV film was ca. 30 nm and that of reference neat MEH-PPV film was ca. 25 nm. The electroluminescent spectroscopy study showed that direct blending of MEH-PPV with Fe-doped ZnO nanoparticles is a simple and effective approach to significantly increase the luminance intensity of the diode in comparison to the diode fabricated by neat MEH-PPV.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    R. Joshi, P. Kumar, A. Gaur, K. Asokan, Appl. Nanosci. 4, 531 (2014)

    Article  Google Scholar 

  2. 2.

    A. Meng, J. Xing, Z. Li, Q. Li, A.C.S. Appl, Mater. Interfaces 7, 27449 (2015)

    Article  Google Scholar 

  3. 3.

    C. Belkhaoui, R. Lefi, N. Mzabi, H. Smaoui, J. Mater. Sci. 29, 7020 (2018)

    Google Scholar 

  4. 4.

    I.N. Reddy, C.V. Reddy, M. Sreedhar, J. Shim, M. Cho, D. Kim, Mater. Sci. Eng. B 240, 33 (2019)

    Article  Google Scholar 

  5. 5.

    S.K. Neogi, M.A. Ahmed, A. Banerjee, S. Bandyopadhyay, Appl. Surf. Sci. 481, 443 (2019)

    Article  Google Scholar 

  6. 6.

    A. Samanta, M.N. Goswami, P.K. Mahapatra, J. Alloys Compd. 730, 399 (2018)

    Article  Google Scholar 

  7. 7.

    A. Mahmoud, M. Echabaane, K. Omri, L. El Mir, R.B. Chaabane, J. Alloys Compd. 786, 960 (2019)

    Article  Google Scholar 

  8. 8.

    L. Qian, Y. Zheng, K.R. Choudhury, D. Bera, F. So, J. Xue, P.H. Holloway, Nano Today 5, 384 (2010)

    Article  Google Scholar 

  9. 9.

    W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Adv. Mater. 16, 1009 (2004)

    Article  Google Scholar 

  10. 10.

    S. Bhatia, N. Verma, R.K. Bedi, Results Phys. 7, 801 (2017)

    Article  Google Scholar 

  11. 11.

    T.M. Hammad, S. Griesing, M. Wotocek, S. Kuhn, R. Hempelmann, U. Hartmann, J.K. Salem, Int. J. Nanoparticles 6, 324 (2013)

    Article  Google Scholar 

  12. 12.

    Y.Q. Su, Y. Zhu, D. Yong, M. Chen, L. Su, A. Chen, Y. Wu, B. Pan, Z. Tang, J. Phys. Chem. Lett. 7, 1484 (2016)

    Article  Google Scholar 

  13. 13.

    M. Singh, P. Dhiman, K.M. Batoo, R.K. Kotnala, Micro. Nano Lett. 7, 1333 (2012)

    Google Scholar 

  14. 14.

    K. Kumar, M. Chitkara, I. Singh, D. Mehta, S. Kumar, J. Alloys Compd. 588, 681 (2014)

    Article  Google Scholar 

  15. 15.

    J. Iqbal, T. Jan, Y. Ronghai, S.H. Naqvi, I. Ahmad, Nano-Micro Lett. 6, 242 (2014)

    Article  Google Scholar 

  16. 16.

    M.A. Ciciliati, M.F. Silva, D.M. Fernandes, M.A.C. De Melo, A. Adelina, W. Hechenleitner, E.A.G. Pineda, Mater. Lett. 159, 84 (2015)

    Article  Google Scholar 

  17. 17.

    A.S. Hassanien, A.A. Akl, A.H. Sáaedi, CrystEngComm 20, 1716 (2018)

    Article  Google Scholar 

  18. 18.

    M.M. Ovhal, A.S. Kumar, P. Khullar, M. Kumar, A.C. Abhyankar, Mater. Chem. Phys. 195, 58 (2017)

    Article  Google Scholar 

  19. 19.

    A. Singhal, S.N. Achary, A.K. Tyagi, P.K. Manna, S.M. Yusuf, Mater. Sci. Eng. B 153, 47 (2008)

    Article  Google Scholar 

  20. 20.

    J. Wang, J. Wan, K. Chen, Mater. Lett. 64, 2373 (2010)

    Article  Google Scholar 

  21. 21.

    I. Bilecka, L. Luo, I. Djerdj, M.D. Rossell, M. Jagodič, Z. Jagličić, Y. Masubuchi, S. Kikkawa, M. Niederberger, J. Phys. Chem. C 115, 1484 (2011)

    Article  Google Scholar 

  22. 22.

    D. Skoda, P. Urbanek, J. Sevcik, L. Munster, J. Antos, I. Kuritka, Mater. Sci. Eng. B 232–235, 22 (2018)

    Article  Google Scholar 

  23. 23.

    D. Skoda, P. Urbanek, J. Sevcik, L. Munster, V. Nadazdy, D.A. Cullen, P. Bazant, J. Antos, I. Kuritka, Org. Electron. Phys. Mater. Appl. 59, 337 (2018)

    Google Scholar 

  24. 24.

    Y. Cun, C. Song, H. Zheng, J. Wang, C. Mai, Y. Liu, J. Li, D. Yu, J. Wang, L. Ying, J. Peng, Y. Cao, J. Mater. Chem. C (2019)

  25. 25.

    T. Hanemann, D.V. Szabó, Materials (Basel) 3, 3468 (2010)

    Article  Google Scholar 

  26. 26.

    V. A. L. Roy, Z. X. Xu, P. Stallinga, H. F. Xiang, B. Yan, and C. M. Che, Digest of Paper – Microprocesses and Nanotechnology 2007; 20th International Microprocesses and Nanotechnology Conference MNC 223509, 104 (2007)

  27. 27.

    M.F. Malek, M.Z. Sahdan, M.H. Mamat, M.Z. Musa, Z. Khusaimi, S.S. Husairi, N.D. Sin, M. Rusop, Appl. Surf. Sci. 275, 75 (2013)

    Article  Google Scholar 

  28. 28.

    F. Habelhames, L. Lamiri, W. Zerguine, B. Nessark, Mater. Sci. Semicond. Process. 16, 727 (2013)

    Article  Google Scholar 

  29. 29.

    R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Bredas, M. Logdlund, W.R. Salaneck, Nature 397, 121 (1999)

    Article  Google Scholar 

  30. 30.

    J. Huang, Z. Xu, S. Zhao, Y. Li, F. Zhang, L. Song, Y. Wang, X. Xu, Solid State Commun. 142, 417 (2007)

    Article  Google Scholar 

  31. 31.

    S.L. Zhao, P.Z. Kan, Z. Xu, C. Kong, D.W. Wang, Y. Yan, Y.S. Wang, Org. Electron. Phys. Mater. Appl. Mater. Appl. 11, 789 (2010)

    Google Scholar 

  32. 32.

    D.-W. Wang, S.-L. Zhao, Z. Xu, C. Kong, W. Gong, Org. Electron. 12, 92 (2011)

    Article  Google Scholar 

  33. 33.

    G. Luka, L. Nittler, E. Lusakowska, P. Smertenko, Org. Electron. 45, 240 (2017)

    Article  Google Scholar 

  34. 34.

    R.K. Pandey, R. Mishra, P. Tiwari, R. Prakash, Org. Electron. 45, 26 (2017)

    Article  Google Scholar 

  35. 35.

    J.S. Shankar, S. Ashok Kumar, B.K. Periyasamy, S.K. Nayak, Polym. Plast. Technol. Eng. 58, 148 (2018)

    Google Scholar 

  36. 36.

    N. Gupta, R. Grover, D.S. Mehta, K. Saxena, Synth. Met. 221, 261 (2016)

    Article  Google Scholar 

  37. 37.

    A. Petrella, M.L. Curri, M. Striccoli, A. Agostiano, P. Cosma, Thin Solid Films 595, 157 (2015)

    Article  Google Scholar 

  38. 38.

    N. Bano, S. Zaman, A. Zainelabdin, S. Hussain, I. Hussain, O. Nur, M. Willander, J. Appl. Phys. 108, 1 (2010)

    Article  Google Scholar 

  39. 39.

    A.N. Aleshin, I.P. Shcherbakov, E.L. Alexandrova, E.A. Lebedev, Solid State Commun. 146, 161 (2008)

    Article  Google Scholar 

  40. 40.

    D. Hewidy, A.S. Gadallah, G.A. Fattah, Phys. B 507, 46 (2017)

    Article  Google Scholar 

  41. 41.

    Y.-J. Choi, S.C. Gong, C.-S. Park, H.-S. Lee, J.G. Jang, H.J. Chang, G.Y. Yeom, H.-H. Park, A.C.S. Appl, Mater. Interfaces 5, 3650 (2013)

    Article  Google Scholar 

  42. 42.

    R. Deshmukh, M. Niederberger, Chem. A Eur. J. 23, 8542 (2017)

    Article  Google Scholar 

  43. 43.

    K. Raja, P.S. Ramesh, D. Geetha, Spectrochim. Acta Part A 131, 183 (2014)

    Article  Google Scholar 

  44. 44.

    P.D. Cozzoli, A. Kornowski, H. Weller, J. Phys. Chem. B 109, 2638 (2005)

    Article  Google Scholar 

  45. 45.

    S. Karamat, R.S. Rawat, P. Lee, T.L. Tan, R.V. Ramanujan, Prog. Nat. Sci. Mater. Int. 24, 142 (2014)

    Article  Google Scholar 

  46. 46.

    Z.N. Kayani, E. Abbas, Z. Saddiqe, S. Riaz, S. Naseem, Mater. Sci. Semicond. Process. 88, 109 (2018)

    Article  Google Scholar 

  47. 47.

    C. Han, L. Duan, X. Zhao, Z. Hu, Y. Niu, W. Geng, J. Alloys Compd. 770, 854 (2019)

    Article  Google Scholar 

  48. 48.

    M.A. Ciciliati, M.F. Silva, D.M. Fernandes, M.A.C. De Melo, A.A.W. Hechenleitner, E.A.G. Pineda, Mater. Lett. 159, 84 (2015)

    Article  Google Scholar 

  49. 49.

    C. Aydn, M.S. Abd El -Sadek, K. Zheng, I.S. Yahia, F. Yakuphanoglu, Opt. Laser Technol. 48, 447 (2013)

    Article  Google Scholar 

  50. 50.

    A. Debernardi, M. Fanciulli, Phys. B 401–402, 451 (2007)

    Article  Google Scholar 

  51. 51.

    M.M. Hassan, W. Khan, A. Azam, A.H. Naqvi, J. Lumin. 145, 160 (2014)

    Article  Google Scholar 

  52. 52.

    S. Kanchana, M.J. Chithra, S. Ernest, K. Pushpanathan, J. Lumin. 176, 6 (2016)

    Article  Google Scholar 

  53. 53.

    M.V. Limaye, S.B. Singh, R. Das, P. Poddar, S.K. Kulkarni, J. Solid State Chem. 184, 391 (2011)

    Article  Google Scholar 

  54. 54.

    I. Musa, F. Massuyeau, E. Faulques, T.P. Nguyen, Synth. Met. 162, 1756 (2012)

    Article  Google Scholar 

  55. 55.

    P. Urbánek, I. Kuřitka, S. Daniš, J. Toušková, J. Toušek, Polym.(UK) 55, 4050 (2014)

    Article  Google Scholar 

  56. 56.

    P. Urbánek, I. Kuřitka, J. Ševčík, J. Toušková, J. Toušek, V. Nádaždy, P. Nádaždy, K. Végsö, P. Šiffalovič, R. Rutsch, M. Urbánek, Polym. (Guildf) 169, 243 (2019)

    Article  Google Scholar 

  57. 57.

    T.-W.F. Chang, S. Musikhin, L. Bakueva, L. Levina, M.A. Hines, P.W. Cyr, E.H. Sargent, Appl. Phys. Lett. 84, 4295 (2004)

    Article  Google Scholar 

  58. 58.

    M. Pientka, V. Dyakonov, D. Meissner, A. Rogach, D. Talapin, H. Weller, L. Lutsen, D. Vanderzande, Nanotechnology 15, 163 (2004)

    Article  Google Scholar 

Download references


This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic - Program NPU I (LO1504) and Internal Grant Agency of Tomas Bata University in Zlin (Grant Numbers: IGA/CPS/2017/008, IGA/CPS/2018/007 and IGA/CPS/2019/007). This contribution was written with the support of Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and the national budget of Czech Republic, within the framework of project CPS - strengthening research capacity (Reg. Number: CZ.1.05/2.1.00/19.0409).

Author information



Corresponding author

Correspondence to David Skoda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6785 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jamatia, T., Skoda, D., Urbanek, P. et al. Microwave-assisted synthesis of FexZn1−xO nanoparticles for use in MEH-PPV nanocomposites and their application in polymer light-emitting diodes. J Mater Sci: Mater Electron 30, 11269–11281 (2019). https://doi.org/10.1007/s10854-019-01473-z

Download citation