Skip to main content
Log in

Facile fabrication of Ag–Bi2GeO5 microflowers and the high photodegradable performance on RhB

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a simple template-free one-pot solvothermal method was used to prepare hierarchical microflowers from Ag-modified Bi2GeO5 nanosheets. To characterize the phases and morphologies of the products, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) surface area measurements were used. The characterization results showed the deposition of some spherical metal Ag particles ranging from 10 to 20 nm in size on the Bi2GeO5 nanosheets surface and the nanosheets-assembly of hierarchical microflowers with macroporous structures. Based on the Ag nanoparticles surface plasmonic resonance (SPR) and the hierarchical microflowers structure of Bi2GeO5, the Ag-modified Bi2GeO5 self-assembly microflowers exhibited excellent UV-light absorption. Photodegradable tests indicated that the decolorization rate of RhB with Ag-modified Bi2GeO5 (RN = 0.1) microflowers was nearly 100% within 25 min, which was 1.5 times higher compared to that of unmodified Bi2GeO5 microflowers. Additionally, the photocatalytic performance stability tests demonstrated that the Ag-modified Bi2GeO5 hierarchical microflowers has excellent chemical stability. Investigations into the main oxidative species indicate that the main active species of Ag-modified Bi2GeO5 in RhB photodegradation are the superoxide radical (\({\text{O}}_{2}^{ \cdot - }\)), and the ·OH and h+ are also partially involved in the photocatalytic process. Finally, a possible photocatalytic mechanism for RhB photo-degradation onto Ag-modified Bi2GeO5 microflowers was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

References

  1. J. Liu, G. Zhang, Template-free synthesis and high photocatalytic activity of hierarchical Zn2GeO4 microspheres. CrystEngComm 15, 382–389 (2012)

    Article  Google Scholar 

  2. G. Jiang, B. Tang, X. Li, Z. Wei, X. Wang, W. Chen, J. Wan, L. Shen, Preparation of Ag-modified Zn2GeO4 nanorods for photo-degradation of organic pollutants. Powder Technol. 251, 37–40 (2014)

    Article  Google Scholar 

  3. L. Zhou, D. Zhao, X.W. Lou, Double-shelled CoMnO hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 24, 745–748 (2012)

    Article  Google Scholar 

  4. Z.Q. Li, X.S. Lin, L. Zhang, X.T. Chen, Z.L. Xue, Fast preparation of Bi2GeO5 nanoflakes via a microwave-hydrothermal process and enhanced photocatalytic activity after loading with Ag nanoparticles. Mater. Res. Bull. 47, 2422–2427 (2012)

    Article  Google Scholar 

  5. H. Guo, J. Chen, W. Weng, Q. Wang, S. Li, Facile template-free one-pot fabrication of ZnCo2O4 microspheres with enhanced photocatalytic activities under visible-light illumination. Chem. Eng. J. 239, 192–199 (2014)

    Article  Google Scholar 

  6. F. Lu, W. Cai, Y. Zhang, ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance. Adv. Func. Mater. 18, 1047–1056 (2010)

    Article  Google Scholar 

  7. G. Jiang, X. Wang, Z. Wei, X. Li, X. Xi, R. Hu, B. Tang, R. Wang, S. Wang, T. Wang, Photocatalytic properties of hierarchical structures based on Fe-doped BiOBr hollow microspheres. J. Mater. Chem. A 1, 2406–2410 (2013)

    Article  Google Scholar 

  8. Y. Zhiguo, Y. Jinhua, K. Naoki, K. Tetsuya, O. Shuxin, S.W. Hilary, Y. Hui, C. Junyu, L. Wenjun, L. Zhaosheng, An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater. 9, 559–564 (2010)

    Article  Google Scholar 

  9. C. Xu, Y. Liu, B. Huang, L. Hui, X. Qin, X. Zhang, D. Ying, Preparation, characterization, and photocatalytic properties of silver carbonate. Appl. Surf. Sci. 257, 8732–8736 (2011)

    Article  Google Scholar 

  10. R. Chen, J. Bi, L. Wu, Z. Li, X. Fu, Orthorhombic Bi2GeO5 nanobelts: synthesis, characterization, and photocatalytic properties. Cryst. Growth Des. 9, 1775–1779 (2009)

    Article  Google Scholar 

  11. A.B. Aritonang, Y.K. Krisnandi, J. Gunlazuardi, Modification of TiO2 nanotube arrays with N doping and Ag decorating for enhanced visible light photoelectrocatalytic degradation of methylene blue. Int. J. Adv. Sci. Eng. Inf. Technol. 8, 234 (2018)

    Article  Google Scholar 

  12. L. Chen, M. Liu, Y. Zhao, Q. Kou, Y. Wang, Y. Liu, Y. Zhang, J. Yang, Y.M. Jung, Enhanced catalyst activity by decorating of Au on Ag@Cu2O nanoshell. Appl. Surf. Sci. 435, 72–78 (2018)

    Article  Google Scholar 

  13. A.A. Essawy, Silver imprinted zinc oxide nanoparticles: Green synthetic approach, characterization and efficient sunlight-induced photocatalytic water detoxification. J. Cleaner Prod. 183, 1011–1020 (2018)

    Article  Google Scholar 

  14. S. Liu, N. Wang, Y. Zhang, Y. Li, Z. Han, P. Na, Efficient removal of radioactive iodide ions from water by three-dimensional Ag2O–Ag/TiO2 composites under visible light irradiation. J. Hazard. Mater. 284, 171–181 (2015)

    Article  Google Scholar 

  15. M. Wu, B. Yang, Y. Lv, Z. Fu, J. Xu, T. Guo, Y. Zhao, Efficient one-pot synthesis of Ag nanoparticles loaded on N-doped multiphase TiO2 hollow nanorod arrays with enhanced photocatalytic activity. Appl. Surf. Sci. 256, 7125–7130 (2010)

    Article  Google Scholar 

  16. M. Naeem, S. Qaseem, I.H. Gul, A. Maqsood, Study of active surface defects in Ti doped ZnO nanoparticles. J. Appl. Phys. 107, 1897 (2010)

    Article  Google Scholar 

  17. K. Shetty, B.S. Prathibha, D. Rangappa, K.S. Anantharaju, H.P. Nagaswarupa, H. Nagabhushana, S.C. Prashantha, Photocatalytic study for fabricated Ag doped and undoped MgFe2O4 nanoparticles. Materials Today Proceedings 4, 11764–11772 (2017)

    Article  Google Scholar 

  18. M.A. Thomas, W.W. Sun, J.B. Cui, Mechanism of Ag doping in ZnO nanowires by electrodeposition: experimental and theoretical insights. J. Phys. Chem. C 116, 6383–6391 (2012)

    Article  Google Scholar 

  19. Y. Yang, G. Zhang, W. Xu, Facile synthesis and photocatalytic properties of AgAgClTiO2/rectorite composite. J. Colloid Interface Sci. 376, 217 (2012)

    Article  Google Scholar 

  20. X. Xuan, S. Yaofang, Z. Deqiang, F. Zihong, X. Shimin, Z. Bingyao, Z. Shiyu, L. Guotao, Mechanisms for •O2 − and •OH production on flowerlike BiVO4 photocatalysis based on Electron Spin Resonance. Front. Chem. 6, 64 (2018)

    Article  Google Scholar 

  21. L. Zhang, W. Zheng, H. Jiu, W. Zhu, G. Qi, Preparation of the anatase/TiO2 (B) TiO2 by self-assembly process and the high photodegradable performance on RhB. Ceram. Int. 42, 12726–12734 (2016)

    Article  Google Scholar 

  22. Z. Zheng, J. Teo, X. Chen, H. Liu, Y. Yuan, E.R. Waclawik, Z. Zhong, H. Zhu, Correlation of the catalytic activity for oxidation taking place on various TiO2 surfaces with surface OH groups and surface oxygen vacancies. Chem. Eur. J. 16, 1202–1211 (2010)

    Article  Google Scholar 

  23. B. Erdem, R.A. Hunsicker, G.W. Simmons, E.D. Sudol, V.L.D. And, M.S. Elaasser, XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 17, 2664–2669 (2001)

    Article  Google Scholar 

  24. H. Fu, C. Pan, A. Wenqing, Y. Zhu, Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J. Phys. Chem. B 109, 22432 (2005)

    Article  Google Scholar 

  25. J.F. Rusling, P. Zuman, Polarographic reduction of aldehydes and ketones : Part XXV. Electroreduction of pyridinecarboxaldehydes in aqueous buffered solutions. J. Electroanal. Chem. Interfacial Electrochem. 213, 255–276 (1986)

    Article  Google Scholar 

  26. J. Zhuang, W. Dai, Q. Tian, Z. Li, L. Xie, J. Wang, P. Liu, X. Shi, D. Wang, Photocatalytic degradation of RhB over TiO2 bilayer films: effect of defects and their location. Langmuir 26, 9686–9694 (2010)

    Article  Google Scholar 

  27. S. Sakthivel, M.V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann, V. Murugesan, Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res. 38, 3001–3008 (2004)

    Article  Google Scholar 

  28. Z.G. Jia, K.K. Peng, L.I. Yan-Hua, R.S. Zhu, Preparation and photocatalytic performance of porous ZnO microrods loaded with Ag. Trans. Nonferrous Met. Soc. China 22, 873–878 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 11602233).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lishuang Hu or Shuangqi Hu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Jin, R., Hu, L. et al. Facile fabrication of Ag–Bi2GeO5 microflowers and the high photodegradable performance on RhB. J Mater Sci: Mater Electron 30, 10912–10922 (2019). https://doi.org/10.1007/s10854-019-01435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01435-5

Navigation