Skip to main content
Log in

3D imaging of backside metallization of SiC-SBD influenced by annealing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the influence of annealing at 250 °C for 500 h on Ohmic contact of backside electrode of Silicon Carbide Schottky-Barrier-Diode (SiC-SBD) was investigated. Considering the prevalence status of the SiC-SBD as power device applications, the experiment was implemented on a commercial based SiC-SBD device. The annealing has brought remarkable transition in the structure and the impurity profile at the surface and the Ag/Ni interface of the device as a result of oxidation. For these evaluations, dual-beam Time-of-flight Secondary Ion Mass Spectrometry is regarded as an available analytical technique on the high sensitivity and imaging ability. In the deeper region of the backside electrode, an amorphous Ni–Ti alloy layer was found between the Ni/Ti interface of the annealed sample, which is also considered the result of diffusion due to the annealing. On the other hands, some nuggets of glassy-carbon and Ti cubic structures were observed in the Ni(Si)–C layer of both the non-annealed and the annealed samples. These structures are deduced to be formed during the fabrication process of the backside electrode and to be stable against the annealing. For these evaluations, Transmission Electron Microscopy (TEM) and Scanning TEM (STEM)—Energy Dispersion X-ray analysis were optimized with the high lateral resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Kimoto, J. Appl. Phys. 54, 040103 (2015)

    Article  Google Scholar 

  2. L.M. Porter, R.F. Davis, Mater. Sci. Eng. B 34, 83 (1995)

    Article  Google Scholar 

  3. F. Roccaforte, F. La Via, V. Raineri, Int. J. High Speed Electron. Syst. 15(4), 781 (2001)

    Article  Google Scholar 

  4. F. Roccaforte, F. La Via, V. Raineri, Ohmic Contacts to SiC, in SiC Materials and Devices, ed. by M.S. Shur, M. Levinshtein, S. Rumyantsev (World Scientific, Shingapore, 2006)

    Google Scholar 

  5. F. Roccaforte, F. La Via, V. Raineri, R. Pierobon, E. Zanoni, J. Appl. Phys. 93(11), 9237 (2003)

    Article  Google Scholar 

  6. F. Roccaforte, M. Vivona, G. Greco, R.L. Nigro, F. Giannazzo, S. Rascuna, M. Saggio, Mater. Sci. Forum 924, 339 (2017)

    Article  Google Scholar 

  7. T. Sugioka, S. Nagao, S. Ogawa, T. Fujibayashi, Y. Sumida, Z. Hao, K. Suganuma, 2016 IEEE 16TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO) 184 (2016)

  8. S. Seki, A. Shimoyama, H. Zhang, S. Kurosaka, T. Sugioka, H. Fujita, K. Yamamura, T. Muramatsu, T. Sugahara, S. Nagao, K. Suganuma, 2017 INTERNATIONAL CONFERENCE ON ELECTRONICS PACKAGING (ICEP) 101 (2017)

  9. K. Suganuma, S. Kim, IEEE Electron Device Lett. 31(12), 1467 (2010)

    Article  Google Scholar 

  10. M. Vivona, G. Greco, R. Lo Nigro, C. Bongiorno, F. Roccaforte, J. Appl. Phys. 118, 035705 (2015)

    Article  Google Scholar 

  11. M. Vivona, G. Greco, F. Giannazzo, R. Lo Nigro, S. Rascuna, S. Rascuna, M. Saggio, F. Roccaforte, Semicond. Sci. Technol. 29, 075018 (2014)

    Article  Google Scholar 

  12. C. Oh, S. Nagano, T. Kunimune, K. Suganuma, Appl. Phys. Lett. 104, 161603 (2014)

    Article  Google Scholar 

  13. D.K. Kim, W.D. Nix, R.P. Vinci, M.D. Deal, J.D. Plumer, J. Appl. Phys. 90, 781 (2001)

    Article  Google Scholar 

  14. C. Oh, S. Nagano, K. Suganuma, J. Electronic Mater. 43(12), 4406 (2014)

    Article  Google Scholar 

  15. S.K. Lin, S. Nagao, E. Yokoi, C. Oh, H. Zhang, Y.C. Liu, S.G. Lin, K. Suganuma, Sci. Rep. 6, 34769 (2016)

    Article  Google Scholar 

  16. M.A. Hollanders, B.J. Thijsse, D.J. Mittemeijer, Phys. Rev. B 42, 5481 (1990)

    Article  Google Scholar 

  17. A.J. Cavaleiro, A.S. Ramos, R.M.S. Martins, F.M. Fernandes, J. Morgiel, C. Baehtz, M.T. Vieira, J. Alloys Compd. 646, 1165 (2015)

    Article  Google Scholar 

  18. R. Gupta, M. Gupta, S.K. Kulkarni, S. Kharrazi, A. Gupta, S.M. Chaudhari, Thin Solid Films 515, 2213 (2006)

    Article  Google Scholar 

  19. S.Y. Han, K.H. Kim, J.K. Kim, H.W. Jang, K.H. Lee, N.K. Kim, E.D. Kim, J.L. Lee, Appl. Phys. Lett. 79, 12 (2001)

    Article  Google Scholar 

  20. S. Tsukimoto, K. Nitta, T. Sakai, M. Moriyama, M. Murakami, J. Electron. Mater. 33, 5 (2004)

    Article  Google Scholar 

  21. M. Vivona, G. Greco, C. Bongiorno, R. Lo Nigro, S. Scalese, F. Roccaforte, App. Surf. Sci. 420, 331 (2017)

    Article  Google Scholar 

  22. S.K. Lee, C.M. Zetterling, M. Osling, J.P. Palmquist, H. Hogberg, U. Jansson, Solid-State Electron 44, 1179 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the JST Advanced Low Carbon Technology Research and Development Program (ALCA) project “Development of a high frequency GaN power module package technology” (Grant No. J165101047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichiro Sameshima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sameshima, J., Sugahara, T., Ishina, T. et al. 3D imaging of backside metallization of SiC-SBD influenced by annealing. J Mater Sci: Mater Electron 30, 10848–10856 (2019). https://doi.org/10.1007/s10854-019-01428-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01428-4

Navigation