Skip to main content

Advertisement

Log in

Template synthesis and characterization of CdS/TiO2 coaxial nanocables for photocatalysis in visible light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CdS/TiO2 coaxial nanocables was synthesized through electrodeposition method with the assistant of porous anodic aluminum oxide (AAO) template. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). The morphology results show that the external diameter of CdS/TiO2 coaxial nanocables is approximately 100 nm and the wall thickness is almost 20 nm, indicating that the TiO2 nanotubes are fully filled with CdS nanowires. The photo response shows that doping CdS nanowire arrays (NWAs) into TiO2 nanotube arrays (NTAs) could expand the spectral response of TiO2 from ultraviolet region to the visible light region. Meanwhile, compared with pure TiO2 NTAs, the CdS/TiO2 coaxial nanocables displayed an improved photodegradation efficiency for Rhodamine B (RhB) from 47.77 to 98.86%. As for the photocatalytic activity of hydrogen production, the H2 production evolution rate of CdS/TiO2 coaxial nanocables was 8.7 times higher than that of TiO2 NTAs within 200 min reaches as 1256 μmol/h. The enhancement of photocatalysis activity indicates that CdS/TiO2 coaxial nanocables has a potential application in photocatalytic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Stojadinović, N. Tadić, N. Radić, B. Grbić, R. Vasilić, CdS particles modified TiO2 coatings formed by plasma electrolytic oxidation with enhanced photocatalytic activity. Surf. Coat. Technol. 344, 528–533 (2018)

    Article  Google Scholar 

  2. Q. Wang, J. Huang, H. Sun, K.Q. Zhang, Y. Lai, Uniform carbon dots@TiO2 nanotube arrays with full spectrum wavelength light activation for efficient dye degradation and overall water splitting. Nanoscale 9, 16046–16058 (2017)

    Article  Google Scholar 

  3. A.Y. Zhang, W.K. Wang, D.N. Pei, H.Q. Yu, Degradation of refractory pollutants under solar light irradiation by a robust and self-protected ZnO/CdS/TiO2 hybrid photocatalyst. Water Res. 92, 78–86 (2016)

    Article  Google Scholar 

  4. J. Li, J.P. McClure, R. Fu, R. Jiang, D. Chu, Understanding charge transfer dynamics in QDs-TiO2 nanorod array photoanodes for solar fuel generation. Appl. Surf. Sci. 429, 48–54 (2018)

    Article  Google Scholar 

  5. P. Lv, W. Fu, Y. Mu et al., Photoelectrochemical property of CdS and PbS cosensitized on the TiO2 array by novel successive ionic layer adsorption and reaction method. J. Alloys Compd. 621, 30–34 (2015)

    Article  Google Scholar 

  6. H. Yu, R. Shi, Y. Zhao et al., Smart utilization of carbon dots in semiconductor photocatalysis. Adv. Mater. 28, 9454–9477 (2016)

    Article  Google Scholar 

  7. I. Majeed, M.A. Nadeem, M. Al-Oufi et al., On the role of metal particle size and surface coverage for photo-catalytic hydrogen production: a case study of the Au/CdS system. Appl. Catal. B 182, 266–276 (2016)

    Article  Google Scholar 

  8. M.D. Regulacio, M.Y. Han, Multinary I-III-VI2 and I2-II-IV-VI4 semiconductor nanostructures for photocatalytic applications. Acc. Chem. Res. 49, 511–519 (2016)

    Article  Google Scholar 

  9. L. Wu, F. Li, Y. Xu et al., Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation. Appl. Catal. B 164, 217–224 (2015)

    Article  Google Scholar 

  10. D. Zhao, C.-F. Yang, Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells. Renew. Sustain. Energy Rev. 54, 1048–1059 (2016)

    Article  Google Scholar 

  11. S. Bai, L. Wang, X. Chen, J. Du, Y. Xiong, Chemically exfoliated metallic MoS2 nanosheets: a promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 8, 175–183 (2014)

    Article  Google Scholar 

  12. Y. Li, K. Lv, W. Ho, F. Dong, X. Wu, Y. Xia, Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): an efficient visible-light-driven Z-scheme hybridized photocatalyst. Appl. Catal. B 202, 611–619 (2017)

    Article  Google Scholar 

  13. V.N. Nguyen, M.T. Doan, M.V. Nguyen, Photoelectrochemical water splitting properties of CdS/TiO2 nanofibers-based photoanode. J. Mater. Sci. Mater. Electron. 30, 926–932 (2018)

    Article  Google Scholar 

  14. Z. Li, B. Tian, W. Zhen, Y. Wu, G. Lu, Inhibition of hydrogen and oxygen recombination using oxygen transfer reagent hemin chloride in Pt/TiO2 dispersion for photocatalytic hydrogen generation. Appl. Catal. B 203, 408–415 (2017)

    Article  Google Scholar 

  15. H.-I. Kim, K. Kim, S. Park, W. Kim, S. Kim, J. Kim, Titanium dioxide surface modified with both palladium and fluoride as an efficient photocatalyst for the degradation of urea. Sep. Purif. Technol. 209, 580–587 (2019)

    Article  Google Scholar 

  16. Y. Cao, Z. Xing, Y. Shen et al., Mesoporous black Ti3+/N-TiO2 spheres for efficient visible-light-driven photocatalytic performance. Chem. Eng. J. 325, 199–207 (2017)

    Article  Google Scholar 

  17. M. Kunnamareddy, B. Diravidamani, R. Rajendran, B. Singaram, K. Varadharajan, Synthesis of silver and sulphur codoped TiO2 nanoparticles for photocatalytic degradation of methylene blue. J. Mater. Sci. Mater. Electron. 29, 18111–18119 (2018)

    Article  Google Scholar 

  18. G. Li, L. Wu, F. Li, P. Xu, D. Zhang, H. Li, Photoelectrocatalytic degradation of organic pollutants via a CdS quantum dots enhanced TiO2 nanotube array electrode under visible light irradiation. Nanoscale 5, 2118–2125 (2013)

    Article  Google Scholar 

  19. A.K. Ayal, Z. Zainal, H.N. Lim et al., Fabrication of CdSe nanoparticles sensitized TiO2 nanotube arrays via pulse electrodeposition for photoelectrochemical application. Mater. Res. Bull. 106, 257–262 (2018)

    Article  Google Scholar 

  20. H. Feng, T. Tran, L. Chen, L. Yuan, Q. Cai, Visible light-induced efficiently oxidative decomposition of p-Nitrophenol by CdTe/TiO2 nanotube arrays. Chem. Eng. J. 215-216, 591–599 (2013)

    Article  Google Scholar 

  21. B. Liu, K. Nakata, S. Liu et al., Theoretical kinetic analysis of heterogeneous photocatalysis by TiO2 nanotube arrays: the effects of nanotube geometry on photocatalytic activity. J. Phys. Chem. C 116, 7471–7479 (2012)

    Article  Google Scholar 

  22. G. Wang, H. Wang, Y. Ling et al., Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026–3033 (2011)

    Article  Google Scholar 

  23. Z. Zhao, X. Zhang, G. Zhang et al., Effect of defects on photocatalytic activity of rutile TiO2 nanorods. Nano Res. 8, 4061–4071 (2015)

    Article  Google Scholar 

  24. A. Meng, B. Zhu, B. Zhong, L. Zhang, B. Cheng, Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl. Surf. Sci. 422, 518–527 (2017)

    Article  Google Scholar 

  25. A. Bjelajac, V. Djokić, R. Petrović et al., Absorption boost of TiO2 nanotubes by doping with N and sensitization with CdS quantum dots. Ceram. Int. 43, 15040–15046 (2017)

    Article  Google Scholar 

  26. M.M. Momeni, Y. Ghayeb, Fabrication, characterization and photoelectrochemical behavior of Fe–TiO2 nanotubes composite photoanodes for solar water splitting. J. Electroanal. Chem. 751, 43–48 (2015)

    Article  Google Scholar 

  27. C. Li, J. Yuan, B. Han, L. Jiang, W. Shangguan, TiO2 nanotubes incorporated with CdS for photocatalytic hydrogen production from splitting water under visible light irradiation. Int. J. Hydrogen Energy 35, 7073–7079 (2010)

    Article  Google Scholar 

  28. I. Kartini, Evana, Sutarno, Chotimah, Sol–gel derived ZnO nanorod templated TiO2 nanotube synthesis for natural dye sensitized solar cell. Adv. Mater. Res. 896, 485–488 (2014)

    Article  Google Scholar 

  29. Y.-H. Chang, C.-M. Liu, C. Chen, H.-E. Cheng, T.-C. Lu, The differences in optical characteristics of TiO2 and TiO2/AAO nanotube arrays fabricated by atomic layer deposition. J. Electrochem. Soc. 159, K136–K140 (2012)

    Article  Google Scholar 

  30. Y. Li, H. Cheng, N. Wang, S. Zhou, D. Xie, T. Li, Annealing effects on the microstructure, magnetism and microwave-absorption properties of Fe/TiO2 nanocomposites. J. Magn. Magn. Mater. 471, 346–354 (2019)

    Article  Google Scholar 

  31. T. Frade, M.E.M. Jorge, B. Fernández, R. Pereiro, A. Gomes, A possible growth mechanism for ZnO–TiO2 composite nanostructured films prepared by electrodeposition. J. Electrochem. Soc. 161, D125–D133 (2014)

    Article  Google Scholar 

  32. D. Kang, T.W. Kim, S.R. Kubota, A.C. Cardiel, H.G. Cha, K.-S. Choi, Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting. Chem. Rev. 115, 12839–12887 (2015)

    Article  Google Scholar 

  33. H. Wang, H. Zhou, J. Lu, S. Yao, W. Zhang, Electrodeposition of CdSe/TiO2 coaxial nanocables for enhanced photocatalytic performance and H2 evolution in visible light. J. Electrochem. Soc. 165, D160–D166 (2018)

    Article  Google Scholar 

  34. J. Fu, B. Chang, Y. Tian, F. Xi, X. Dong, Novel C3N4–CdS composite photocatalysts with organic–inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism. J. Mater. Chem. A 1, 3083 (2013)

    Article  Google Scholar 

  35. D. Esparza, G. Bustos-Ramirez, R. Carriles et al., Studying the role of CdS on the TiO2 surface passivation to improve CdSeTe quantum dots sensitized solar cell. J. Alloys Compd. 728, 1058–1064 (2017)

    Article  Google Scholar 

  36. M. Marandi, E. Rahmani, F.A. Farahani, Optimization of the photoanode of CdS quantum dot-sensitized solar cells using light-scattering TiO2 hollow spheres. J. Electron. Mater. 46, 6769–6783 (2017)

    Article  Google Scholar 

  37. N. Zhang, Y. Zhang, X. Pan, M.-Q. Yang, Y.-J. Xu, Constructing Ternary CdS–Graphene–TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation. J. Phys. Chem. C 116, 18023–18031 (2012)

    Article  Google Scholar 

  38. X.F. Qu, J.J. Yuan, X.D. Deng, Y.C. Hou, Y.F. Wang, H.B. Song, An efficient method to form TiO2/CdS nanotube arrays using anodic aluminum oxide (AAO) templates. Key Eng. Mater. 727, 374–380 (2017)

    Article  Google Scholar 

  39. Z. Wen, L. Xi, L. Huiqiong, T. Dali, Y. Junyou, P. Jiangying, Coaxial heterogeneous structure of TiO2 nanotube arrays with CdS as a superthin coating synthesized via modified electrochemical atomic layer deposition. J. Am. Chem. Soc. 132, 12619–12626 (2010)

    Article  Google Scholar 

  40. W. Zhang, H. Deng, H. Li, S. Yao, H. Wang, Synthesis and magnetic properties of Ni–Fe/Cu/Co/Cu multilayer nanowire arrays. J. Mater. Sci. Mater. Electron. 26, 2520–2524 (2015)

    Article  Google Scholar 

  41. H. Wang, Y. Song, W. Liu, S. Yao, W. Zhang, Template synthesis and characterization of TiO2 nanotube arrays by the electrodeposition method. Mater. Lett. 93, 319–321 (2013)

    Article  Google Scholar 

  42. Y. Lai, Z. Lin, Z. Chen, J. Huang, C. Lin, Fabrication of patterned CdS/TiO2 heterojunction by wettability template-assisted electrodeposition. Mater. Lett. 64, 1309–1312 (2010)

    Article  Google Scholar 

  43. A. Ahmad Beigi, S. Fatemi, Z. Salehi, Synthesis of nanocomposite CdS/TiO2 and investigation of its photocatalytic activity for CO2 reduction to CO and CH4 under visible light irradiation. J. CO2 Util. 7, 23–29 (2014)

    Article  Google Scholar 

  44. W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc. 130, 1124 (2008)

    Article  Google Scholar 

  45. A. Izgorodin, O. Winther-Jensen, B. Winther-Jensen, D.R. MacFarlane, CdS thin-film electrodeposition from a phosphonium ionic liquid. Phys. Chem. Chem. Phys. 11, 8532–8537 (2009)

    Article  Google Scholar 

  46. W. Yang, Z. Wu, Z. Lu, X. Yang, L. Song, Template-electrodeposition preparation and structural properties of CdS nanowire arrays. Microelectron. Eng. 83, 1971–1974 (2006)

    Article  Google Scholar 

  47. P. Zhuang, Z. Xiao, X. Zhu, H. Fan, X. Zhang, Study on semiconductor properties of anodic oxide films on tantalum. Electron. Compon. Mater. 30, 35–39 (2011)

    Google Scholar 

  48. X. Zhang, S. Lin, J. Liao et al., Uniform deposition of water-soluble CdS quantum dots on TiO2 nanotube arrays by cyclic voltammetric electrodeposition: effectively prevent aggregation and enhance visible-light photocatalytic activity. Electrochim. Acta 108, 296–303 (2013)

    Article  Google Scholar 

  49. M. Zhang, Y. Xu, J. Lv et al., Capability of coupled CdSe/TiO2 heterogeneous structure for photocatalytic degradation and photoconductivity. Nanoscale Res. Lett. 9, 1–7 (2014)

    Article  Google Scholar 

  50. Y.-L. Lee, C.-F. Chi, S.-Y. Liau, CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectrochemical cell. Chem. Mater. 22, 922–927 (2010)

    Article  Google Scholar 

  51. Q. Zhang, X. Guo, X. Huang et al., Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes. Phys. Chem. Chem. Phys. 13, 4659–4667 (2011)

    Article  Google Scholar 

  52. W. Zhang, J. Liu, Z. Guo, S. Yao, H. Wang, Synthesis and characterization of CdTe nanoparticle-sensitized TiO2 nanotube arrays for photocatalysis. J. Mater. Sci. Mater. Electron. 28, 9505–9513 (2017)

    Article  Google Scholar 

  53. J.-C. Lee, T.G. Kim, W. Lee, S.-H. Han, Y.-M. Sung, Growth of CdS nanorod-coated TiO2 nanowires on conductive glass for photovoltaic applications. Cryst. Growth Des. 9, 4519–4523 (2009)

    Article  Google Scholar 

  54. Z. Shao, W. Zhu, Z. Li, Q. Yang, G. Wang, One-step fabrication of CdS nanoparticle-sensitized TiO2 nanotube arrays via electrodeposition. J. Phys. Chem. C 116, 2438–2442 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Tianjin (No. 11JCYBJC01900). The authors thank all who made efforts to or concerned about this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, J., Zhou, H. et al. Template synthesis and characterization of CdS/TiO2 coaxial nanocables for photocatalysis in visible light. J Mater Sci: Mater Electron 30, 10754–10764 (2019). https://doi.org/10.1007/s10854-019-01419-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01419-5

Navigation