Skip to main content
Log in

Growth and characterization of 1,1,4,4-tetraphenyl-1,3-butadiene organic scintillation crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

1,1,4,4-Tetraphenyl-1,3-Butadiene (TPB) organic scintillation single crystal was grown by solution growth technique. The grown crystal is found to crystallize in monoclinic structure with P21 space group which is ascertained from the single crystal XRD studies. FTIR spectroscopic analysis elucidates the presence of expected vibrational modes of aromatic groups present in TPB material. Results from TG/DSC studies illustrate that the thermal stability of TPB crystal exist up to 232.9 °C. The refractive index of the title crystal is revealed to be 1.615. UV–Vis spectral analysis is used to understand the linear excitation property of the crystal. The broad intense peak at 439 nm in photoluminescence spectrum of TPB single crystal exhibits its high purity and the emission wavelength. Fluorescence lifetime determined by TCSPC method for TPB crystal shows a short decay time (τ). Etching analysis revealed the regular pattern of etch pits and triangular in shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Yanagida, Opt. Mater. 35, 1987 (2013)

    Article  Google Scholar 

  2. F.G. Knoll, Radiation Detection and Measurement, 3rd edn. (Wiley, New York, 2000)

    Google Scholar 

  3. Z. W. Bell, G. M. Brown, C. H. Ho, and F. V. Sloop, Jr., in Proceedings of SPIE, edited by R. B. James, L. A. Franks, A. Burger, E. M. Westbrook, and R. D. Durst (2003), p. 150

  4. J.B. Birks, The Theory and Practice of Scintillation Counting (Elsevier, Amsterdam, 1964), pp. 235–268

    Book  Google Scholar 

  5. D. Totsuka, T. Yanagida, K. Fukuda, N. Kawaguchi, Y. Fujimoto, J. Pejchal, Y. Yokota, A. Yoshikawa, Nucl. Instrum. Methods Phys. Res. Sect. A 659, 399 (2011)

    Article  Google Scholar 

  6. T. Yanagida, Y. Fujimoto, S. Kurosawa, K. Kamada, H. Takahashi, Y. Fukazawa, M. Nikl, V. Chani, Jpn. J. Appl. Phys. 52, 076401 (2013)

    Article  Google Scholar 

  7. T. Yanagida, A. Yoshikawa, Y. Yokota, K. Kamada, Y. Usuki, S. Yamamoto, M. Miyake, M. Baba, K. Kumagai, K. Sasaki, M. Ito, N. Abe, Y. Fujimoto, S. Maeo, Y. Furuya, H. Tanaka, A. Fukabori, T. Rodrigues dos Santos, M. Takeda, N. Ohuchi, IEEE Trans. Nucl. Sci. 57, 1492 (2010)

    Article  Google Scholar 

  8. M. Kokubun, K. Abe, Y. Ezoe, Y. Fukazawa, S. Hong, H. Inoue, K. Ito, T. Itoh, T. Kamae, D. Kasama, M. Kawaharada, N. Kawano, K. Kawashima, S. Kawasoe, Y. Kobayashi, J. Kotoku, M. Kouda, A. Kubota, K. Makishima, T. Mitani, H. Miyasaka, R. Miyawaki, K. Mori, M. Mori, T. Murakami, M.M. Murashima, K. Nakazawa, H. Niko, M. Nomachi, M. Ohno, Y. Okada, K. Oonuki, G. Sato, M. Suzuki, H. Takahashi, I. Takahashi, T. Takahashi, K. Tamura, T. Tanaka, M. Tashiro, Y. Terada, S. Tominaga, S. Watanabe, K. Yamaoka, T. Yanagida, D. Yonetoku, I.E.E.E. Trans, Nucl. Sci. 51, 1991–1996 (2004)

    Article  Google Scholar 

  9. L. Zhang, T. YangDai, Appl. Radiat. Isot. 114, 179 (2016)

    Article  Google Scholar 

  10. T. Itoh, T. Yanagida, M. Kokubun, M. Sato, R. Miyawaki, K. Makishima, T. Takashima, T. Tanaka, K. Nakazawa, T. Takahashi, N. Shimura, H. Ishibashi, Nucl. Instrum. Methods Phys. Res Sect A 579, 239 (2007)

    Google Scholar 

  11. G. Hull, N.P. Zaitseva, N.J. Cherepy, J.R. Newby, W. Stoeffl, S.A. Payne, I.E.E.E. Trans, Nucl. Sci. 56, 899 (2009)

    Article  Google Scholar 

  12. F.D. Brooks, Nucl. Instrum. Methods 162, 477 (1979)

    Article  Google Scholar 

  13. H. Klein, F.D. Brooks, Proc. Sci. 180, 255 (2006)

    Google Scholar 

  14. N.P. Zaitseva, J.J. De Yoreo, M.R. Dehaven, R.L. Vital, K.E. Montgomery, M. Richardson, L.J. Atherton, J. Cryst. Growth 180, 255 (1997)

    Article  Google Scholar 

  15. I. Pritula and K. Sangwal, Fundamentals of Crystal Growth from Solutions, 2nd edn. (Elsevier, Amsterdam, 2014)

    Google Scholar 

  16. W.S. Wang, K. Sutter, C. Bosshard, Z. Pan, H. Arend, P. Günter, G. Chapuis, F. Nicolo, Jpn. J. Appl. Phys. 27, 1138 (1988)

    Article  Google Scholar 

  17. W. Kaminsky, J. Appl. Crystallogr. 38, 566 (2005)

    Article  Google Scholar 

  18. W. Kaminsky, J. Appl. Crystallogr. 40, 382 (2007)

    Article  Google Scholar 

  19. M. Ranjbar, M.A. Taher, J. Clust. Sci. 27, 1553 (2016)

    Article  Google Scholar 

  20. N. Vijayan, S. Rajasekaran, G. Bhagavannarayana, R. Ramesh Babu, R. Gopalakrishnan, M. Palanichamy, P. Ramasamy, Cryst. Growth Des. 6, 2441 (2006)

    Article  Google Scholar 

  21. R.N. Rai, S.R. Mudunuri, R.S.B. Reddi, V.S.A. Kumar Satuluri, S. Ganeshmoorthy, P.K. Gupta, J. Cryst. Growth 321, 72 (2011)

    Article  Google Scholar 

  22. D.C. Sati, R. Kumar, R.M. Mehra, Turkish. J. Phys. 30, 519 (2006)

    Google Scholar 

  23. M. Dongol, Egypt. J. Solids 25, 33 (2002)

    Google Scholar 

  24. S. Kasap, C. Peter, Electronic and Photonic Materials (Springer Science Inc, New York, 2006), p. 983

    Google Scholar 

  25. K. Mohammadi, M. Ranjbar, J. Mater. Sci.: Mater. Electron. 28, 3185 (2017)

    Google Scholar 

  26. M.M. Foroughi, M. Ranjbar, J. Mater. Sci.: Mater. Electron. 28, 1359 (2017)

    Google Scholar 

  27. A. Arulchakkaravarthi, P. Jayavel, P. Santhanaraghavan, P. Ramasamy, J. Cryst. Growth 234, 159 (2002)

    Article  Google Scholar 

  28. S. Sudhahar, M. KrishnaKumar, B.M. Sornamurthy, R. MohanKumar, Spectrochim. Acta A 118, 929 (2014)

    Article  Google Scholar 

  29. J.B.B. Birks, J. Phys. B 1, 323 (1968)

    Google Scholar 

  30. T.A. King, H. Munro, Proc. Phys. Soc. 80, 355 (1962)

    Article  Google Scholar 

  31. N. Durairaj, S. Kalainathan, Mat. Chem. Phys. 181, 529 (2017)

    Article  Google Scholar 

  32. G.T. Wright, Proc. Phys. Soc. Sect. B 69, 358 (1956)

    Article  Google Scholar 

  33. J. B. Birks, The Theory and Practice of Scintillation Counting (Pergamon, London, 1964), pp. 662

    Google Scholar 

  34. M.S. Pandian, P. Ramasamy, Mater. Chem. Phys. 132, 1019 (2012)

    Article  Google Scholar 

  35. S. Mukerji, T. Kar, J. Cryst. Growth 204, 341 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would gratefully thank DST-SERB, Government of India for financial support (Sanction No. EMR/2015/000674 Dated: 26-09-2016) and also thank VIT management for their encouragement. The authors would like to thank IITM-SAIF for providing the single crystal XRD measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kalainathan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arun kumar, D., Kalainathan, S. & Babu, R.S. Growth and characterization of 1,1,4,4-tetraphenyl-1,3-butadiene organic scintillation crystal. J Mater Sci: Mater Electron 30, 10571–10578 (2019). https://doi.org/10.1007/s10854-019-01401-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01401-1

Navigation