Skip to main content

Structural, optical and Schottky diode properties of Cu2ZnSnS4 thin films grown by two-stage method

Abstract

CZTS thin film was prepared by a two-stage process comprising sputter deposition of metallic Cu, Zn, and Sn layers followed annealing treatment of the metallic precursors in a sulfur atmosphere at 560 °C for 3 min. The CZTS thin film was investigated in the way of structural, optical and electrical properties. The XRD pattern of Cu-poor and Zn-rich CZTS thin film was dominated by characteristic peaks of kesterite CZTS planes. Raman spectra of the film ensured formation of kesterite CZTS phase and displayed formation of CTS and ZnS phases. Dense and polycrystalline surface features were observed in SEM images of CZTS thin film. Band–band transitions was not observed due to the probable concentration of deep acceptor levels in this material. The diode parameters of Mo/CZTS/Al structure such as ideality factor, barrier height and serial resistance were calculated employing temperature dependent IV characteristics of Mo/CZTS/Al diode structure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. T. Kato, J.L. Wu, Y. Hirai, H. Sugimoto, V. Bermudez, IEEE J. Photovolt. 9, 325 (2019). https://doi.org/10.1109/Jphotov.2018.2882206

    Article  Google Scholar 

  2. M. Olgar, J. Klaer, R. Mainz et al., Thin Solid Films 615, 402 (2016)

    Article  Google Scholar 

  3. S. van Duren, D. Sylla, A. Fairbrother et al., Sol. Energ Mat. Sol. C 185, 226 (2018)

    Article  Google Scholar 

  4. M. Beres, K. Yu, J. Syzdek, S. Mao, Mater. Chem. Phys. 205, 90 (2018)

    Article  Google Scholar 

  5. X. Yuan, S. Xue, J. Liao, F. Peng, L. Shao, J. Zhang, Mater. Res. Express 5, 016413 (2018)

    Article  Google Scholar 

  6. M. Valdés, M.F. Pascual-Winter, A. Bruchhausen, W. Schreiner, M. Vázquez, Phys. Status Solidi 215, 1800639 (2018)

    Article  Google Scholar 

  7. C.J. Hages, M.J. Koeper, R. Agrawal, Sol. Energ. Mat. Sol. C 145, 342 (2016)

    Article  Google Scholar 

  8. C.I. Mary, M. Senthilkumar, S.M. Babu, J. Mater. Sci. 29, 9751 (2018)

    Google Scholar 

  9. K. Solt, H. Melchior, U. Kroth et al., Appl. Phys. Lett. 69, 3662 (1996)

    Article  Google Scholar 

  10. C.-T. Kuo, W.-H. Chiou, Synth. Met. 88, 23 (1997)

    Article  Google Scholar 

  11. B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (Plenum Press, New York, 1984)

    Book  Google Scholar 

  12. B. Theys, T. Klinkert, F. Mollica et al., Phys. Status Solidi 213, 2425 (2016)

    Article  Google Scholar 

  13. C. Chan, I. Shih, J. Appl. Phys. 68, 156 (1990)

    Article  Google Scholar 

  14. H. Tecimer, S. Aksu, H. Uslu, Y. Atasoy, E. Bacaksız, Ş. Altındal, Sens. Actuators A 185, 73 (2012)

    Article  Google Scholar 

  15. A. Tombak, Y.S. Ocak, M.F. Genişel, T. Kilicoglu, Mater. Sci. Semicond. Process. 28, 98 (2014)

    Article  Google Scholar 

  16. V.R. Reddy, V. Janardhanam, J. Won, C.-J. Choi, J. Colloid Interface Sci. 499, 180 (2017)

    Article  Google Scholar 

  17. R. Touati, I. Trabelsi, M.B. Rabeh, M. Kanzari, J. Mater. Sci. 28, 5315 (2017)

    Google Scholar 

  18. A. Rakhshani, S. Thomas, J. Electron. Mater. 44, 4760 (2015)

    Article  Google Scholar 

  19. F. Boutebakh, M.L. Zeggar, N. Attaf, M. Aida, Optik 144, 180 (2017)

    Article  Google Scholar 

  20. M.A. Olgar, M. Tomakin, T. Kucukomeroglu, E. Bacaksiz, Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/aaff78

    Google Scholar 

  21. M. Olgar, Superlattice Microst. 126, 32 (2019)

    Article  Google Scholar 

  22. S. Chen, A. Walsh, X.G. Gong, S.H. Wei, Adv. Mater. 25, 1522 (2013). https://doi.org/10.1002/adma.201203146

    Article  Google Scholar 

  23. K.V. Gurav, S.W. Shin, U.M. Patil et al., J. Alloy. Compd. 631, 178 (2015). https://doi.org/10.1016/j.jallcom.2014.12.253

    Article  Google Scholar 

  24. O. Vigil-Galan, M. Espindola-Rodriguez, M. Courel et al., Sol. Energy Mater. Sol. Cells 117, 246 (2013). https://doi.org/10.1016/j.solmat.2013.06.008

    Article  Google Scholar 

  25. P.A. Fernandes, P.M.P. Salome, A.F. da Cunha, J. Alloy. Compd. 509, 7600 (2011). https://doi.org/10.1016/j.jallcom.2011.04.097

    Article  Google Scholar 

  26. D.M. Berg, R. Djemour, L. Gutay et al., Appl. Phys. Lett. 100, 192103 (2012). https://doi.org/10.1063/1.4712623

    Article  Google Scholar 

  27. D.M. Berg, M. Arasimowicz, R. Djemour et al., Thin Solid Films 569, 113 (2014). https://doi.org/10.1016/j.tsf.2014.08.028

    Article  Google Scholar 

  28. C. Malerba, F. Biccari, C.L.A. Ricardo et al., J. Alloy. Compd. 582, 528 (2014). https://doi.org/10.1016/j.jallcom.2013.07.199

    Article  Google Scholar 

  29. M.A. Olgar, J. Klaer, R. Mainz, L. Ozyuzer, T. Unold, Thin Solid Films 628, 1 (2017). https://doi.org/10.1016/j.tsf.2017.03.008

    Article  Google Scholar 

  30. S. Levcenko, V. Tezlevan, E. Arushanov, S. Schorr, T. Unold, Phys. Rev. B 86, 045206 (2012)

    Article  Google Scholar 

  31. S. Levcenko, J. Just, A. Redinger et al., Phys. Rev. Appl. 5, 024004 (2016). https://doi.org/10.1103/physrevapplied.5.024004

    Article  Google Scholar 

  32. T. Küçükömeroğlu, S. Yılmaz, İ. Polat, E. Bacaksız, J. Mater. Sci.: Mater. Electron. 29, 10054 (2018)

    Google Scholar 

  33. A.B. Uluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, Ş. Altındal, J. Mater. Sci.: Mater. Electron. 29, 159 (2018)

    Google Scholar 

  34. M.H. Al-Dharob, H.E. Lapa, A. Kökce, A.F. Özdemir, D.A. Aldemir, Ş. Altındal, Mater. Sci. Semicond. Process. 85, 98 (2018)

    Article  Google Scholar 

  35. N. Baraz, İ. Yücedağ, Y. Azizian-Kalandaragh, Ş. Altındal, J. Mater. Sci. 29, 12735 (2018)

    Google Scholar 

  36. A. Kumar, S. Vinayak, R. Singh, Curr. Appl. Phys. 13, 1137 (2013)

    Article  Google Scholar 

  37. M. Mamor, J. Phys.: Condens. Matter 21, 335802 (2009)

    Google Scholar 

  38. B. Güzeldir, M. Sağlam, A. Ateş, A. Türüt, J. Alloy. Compd. 627, 200 (2015)

    Article  Google Scholar 

  39. N. Tuğluoğlu, S. Karadeniz, Ş. Altındal, Appl. Surf. Sci. 239, 481 (2005)

    Article  Google Scholar 

  40. S. Cheung, N. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    Article  Google Scholar 

  41. J.H. Werner, H.H. Güttler, J. Appl. Phys. 69, 1522 (1991)

    Article  Google Scholar 

  42. Z.K. Yuan, S. Chen, H. Xiang et al., Adv. Func. Mater. 25, 6733 (2015)

    Article  Google Scholar 

  43. M. Hernández, C. Alonso, A. Martel, E. Casielles, V. Rejón, J. Peña, Phys. Status Solidi 220, 209 (2000)

    Article  Google Scholar 

  44. T. Gokmen, O. Gunawan, T.K. Todorov, D.B. Mitzi, Appl. Phys. Lett. 103, 103506 (2013)

    Article  Google Scholar 

  45. R.T. Tung, Mater. Sci. Eng. 35, 1 (2001)

    Article  Google Scholar 

  46. T. Tunç, Ş. Altindal, İ. Uslu, İ. Dökme, H. Uslu, Mater. Sci. Semicond. Process. 14, 139 (2011)

    Article  Google Scholar 

  47. Ç.Ş. Güçlü, A.F. Özdemir, Ş. Altindal, Appl. Phys. A 122, 1032 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Atasoy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Atasoy, Y., Olgar, M.A. & Bacaksiz, E. Structural, optical and Schottky diode properties of Cu2ZnSnS4 thin films grown by two-stage method. J Mater Sci: Mater Electron 30, 10435–10442 (2019). https://doi.org/10.1007/s10854-019-01385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01385-y