Skip to main content

Advertisement

Log in

Experimental investigation of fundamental film properties for Co1−xTix alloying films with different compositions (0 ≤ x≤1)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The aggressive shrinkage of contact size unfortunately leads to significant increase of interconnect resistance, especially the irreducible resistance of M0 and/or M1 where thick functional TiN/Ti barrier/liner bilayer occupies too much space of interconnecting metal. In this circumstance, the pursual of alternative barrier/liner working properly is becoming a hot spot. Amorphous Co–Ti alloying film is considered as an active single barrier/liner to replace conventional thick TiN/Ti bilayer structure, achieving lower resistance of interconnects. In this work, the dedicated material properties of Co–Ti films with various content of Ti (from pure Co to pure Ti) are investigated systematically. As-fabricated Co–Ti films were comprehensively characterized in terms of crystalline structure, sheet resistance, surface and interfacial morphology as well as composition using X-ray diffraction, four-probe measurement, scanning electron microscope, and transmission electron microscopy in conjunction with energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy respectively. Obtained results show that taking the low resistivity, thermal stability and Ti segregation at both Co/Co1−xTix and Co1−xTix/SiO2 interface after annealing at 500 °C/30 min into account, the amorphous Co0.75Ti0.25 film is the most proper composition as a single barrier/liner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.H. Bao, J. Ryckaert, Z. Tőkei, A. Mercha, D. Verkest, A.V. Thean, P. Wambacq, Statistical timing analysis considering device and interconnect variability for BEOL requirements in the 5-nm node and beyond. IEEE Trans. VLSI Syst. 25, 1669–1679 (2017)

    Article  Google Scholar 

  2. A. Pyzyna, H. Tsai, M. Lofaro, L. Gignac, H. Miyazoe, R. Bruce, C.M. Breslin, M. Brink, D. Klaus, M. Guillorn, C. Lavoie, K.P. Rodbell, D.-G. Park, E. Joseph, Resistivity of copper interconnects at 28 nm pitch and copper cross-sectional area below 100 nm2, in IEEE International Interconnect Technology Conference, 2017, pp. 16–18

  3. S.M. Rossnagel, T.S. Kuan, Alteration of Cu conductivity in the size effect regime. J. Vac. Sci. Technol. B 22, 240–247 (2004)

    Article  CAS  Google Scholar 

  4. W. Steinhogl, G. Schindler, G. Steinlesberger, M. Traving, M. Engelhardt, Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J. Appl. Phys. 97, 023706 (2005)

    Article  Google Scholar 

  5. A.A. Vyas, C. Zhou, C.Y. Yang, On-chip interconnect conductor materials for end-of-roadmap technology nodes. IEEE Trans. Nanotechnol. 17, 4–10 (2018)

    Article  CAS  Google Scholar 

  6. P. Kapur, J.P. McVittie, K.C. Saraswat, Technology and reliability constrained future copper interconnects. IEEE Trans. Electron Devices 49, 590–597 (2002)

    Article  CAS  Google Scholar 

  7. S. Dutta, K. Sankaran, K. Moors, G. Pourtois, S. Van Elshocht, J. Bommels, W. Vandervorst, Z. Tokei, C. Adelmann, Thickness dependence of the resistivity of platinum group metal thin films. J. Appl. Phys. 122, 025107 (2017)

    Article  Google Scholar 

  8. D. Gall, Electron mean free path in elemental metals. J. Appl. Phys. 119, 085101 (2016)

    Article  Google Scholar 

  9. C. Adelmann, L.G. Wen, A.P. Peter, Y.K. Siew, K. Croes, J. Swerts, M. Popovici, K. Sankaran, G. Pourtois, S. Van Elshocht, J. Bömmels, Z. Tőkei, Alternative metals for advanced interconnects, in IEEE International Interconnect Technology Conference Proceedings, 2014, pp. 173–176

  10. L. Jablonka, L. Riekehr, Z. Zhang, S.-L. Zhang, T. Kubart, Highly conductive ultrathin Co films by high-power impulse magnetron sputtering. Appl. Phys. Lett. 112, 043103 (2018)

    Article  Google Scholar 

  11. M. Wislicenus, R. Liske, L. Gerlich, B. Vasilev, A. Preusse, Cobalt advanced barrier metallization: a resistivity composition analysis. Microelectron. Eng. 137, 11–15 (2015)

    Article  CAS  Google Scholar 

  12. M. He, X. Zhang, T. Nogami, X. Lin, J. Kelly, H. Kim, T. Spooner, D. Edelstein, L. Zhao, Mechanism of Co liner as enhancement layer for Cu interconnect gap-fill. J. Electrochem. Soc. 160, D3040–D3044 (2013)

    Article  CAS  Google Scholar 

  13. M.H. van der Veen, K. Vandersmissen, D. Dictus, S. Demuynck, R. Liu, X. Bin, P. Nalla, A. Lesniewska, L. Hall, K. Croes, L. Zhao, J. Bommels, A. Kolics, Z. Tokei, in International Interconnect Technology Conference/MAM, 2015, pp. 25–28

  14. H.-S. Lu, S.-F. Ding, G.-P. Ru, Y.-L. Jiang, X.-P. Qu, Investigation of Co/TaN bilayer as Cu diffusion barrier, in IEEE International Conference on Solid-State Integrated Circuit Technology, 2010, pp. 7–9

  15. H. Shimizu, K. Sakod, T. Momose, Y. Shimogaki, Atomic layer deposited Co (W) film as a single-layered barrier/liner for next-generation Cu-interconnects. Jpn. J. Appl. Phys. 51, 05EB02 (2012)

    Article  Google Scholar 

  16. Y.-H. Su, J.-N. Shih, Y.-S. Wang, W.-H. Tseng, W.-H. Liao, C.-Y. Hung, W.-H. Lee, Y.-L. Wang, CoW alloy as multi-function diffusion barrier material for next-generation Cu metallization, in IEEE International Symposium on Next-Generation Electronics, 2015, pp. 1–3

  17. Y.-H. Su, T.-C. Kuo, W.-H. Lee, Y.-S. Wang, C.-C. Hung, W.-H. Tseng, K.-H. Wei, Y.-L. Wang, Effect of tungsten incorporation in cobalt tungsten alloys as seedless diffusion barrier materials. Microelectron. Eng. 171, 25–30 (2017)

    Article  CAS  Google Scholar 

  18. H. Shimizu, K. Sakoda, Y. Shimogaki, CVD of cobalt–tungsten alloy film as a novel copper diffusion barrier. Microelectron. Eng. 106, 91–95 (2013)

    Article  CAS  Google Scholar 

  19. X. Wang, L.-T. Liu, P. He, X.-P. Qu, J. Zhang, S.-H. Wei, Y.A. Mankelevich, M.R. Baklanov, Study of CoTa alloy as barrier layer for Cu/low-k interconnects. J. Phys. D 50, 405306 (2017)

    Article  Google Scholar 

  20. X.-P. Qu, X. Wang, L.-A. Cao, W.-Z. Xu, Study of a single layer ultrathin CoMo film as a direct plateable adhesion/barrier layer for next generation interconnect, in IEEE International Interconnect Technology Conference/Advanced Metallization Conference, 2014, pp. 257–260

  21. M. Hosseini, D. Ando, Y. Sutou, J. Koike, Co and CoTix for contact plug and barrier layer in integrated circuits. Microelectron. Eng. 189, 78–84 (2018)

    Article  CAS  Google Scholar 

  22. M. Hosseini, J. Koike, Metallurgical and electrical characterization of ultrathin CoTix liner/barrier for Cu interconnects, in IEEE International Interconnect Technology Conference, 2017, pp. 1–3

  23. M. Hosseini, J. Koike, Amorphous CoTix as a liner/diffusion barrier material for advanced copper metallization. J. Alloys Compd 721, 134–142 (2017)

    Article  CAS  Google Scholar 

  24. S.A. Chew, H. Yu, M. Schaekers, S. Demuynck, G. Mannaert, E. Kunnen, E. Rosseel, A. Hikavyy, A. Dangol, K. De Meyer, D. Mocuta, N. Horiguchi, Ultralow resistive wrap around contact to scaled FinFET devices by using ALD-Ti contact metal, in IEEE International Interconnect Technology Conference, 2017, pp. 1–3

  25. H. Yu, M. Schaekers, E. Rosseel, A. Peter, J.-G. Lee, W.-B. Song, S. Demuynck, T. Chiarella, L.-Å. Ragnarsson, S. Kubicek, J. Everaert, N. Horiguchi, K. Barla, D. Kim, N. Collaert, A.V.-Y. Thean, K.D. Meyer, 1.5 × 10−9 Ω cm2 Contact resistivity on highly doped Si:P using Ge pre-amorphization and Ti silicidation, in IEEE International Electron Devices Meeting, 2015, pp. 21.7.1–21.7.4

  26. C.-N. Ni, X. Li, S. Sharma, K.V. Rao, M. Jin, C. Lazik, V. Banthia, B. Colombeau, N. Variam, A. Mayur, H. Chung, R. Hung, A. Brand, Ultra-low contact resistivity with highly doped Si:P contact for nMOSFET, in VLSI Technology. IEEE Symposium, 2015, pp. T118–T119

  27. Y. Yang, N. Breil, C. Yang, J. Hsieh, F. Chiang, B. Colombeau, et al., Ultra low p-type SiGe contact resistance FinFETs with Ti silicide liner using cryogenic contact implantation amorphization and solid-phase epitaxial regrowth (SPER), in IEEE Symposium on VLSI Technology, 2016, pp. 1–2

  28. M. Kononen, J. Kivilahti, Concise review biomaterials and bioengineering: fusing of dental ceramics to titanium. J. Dent. Res. 80, 848–854 (2001)

    Article  CAS  Google Scholar 

  29. J.A. Aboaf, E. Klokholm, Amorphous magnetic alloys of cobalt–titanium. J. Appl. Phys. 52, 1844–1846 (1981)

    Article  CAS  Google Scholar 

  30. S.W. Russell, J.W. Strane, J.W. Mayer, S.Q. Wang, Reaction kinetics in the Ti/SiO2 system and Ti thickness dependence on reaction rate. J. Appl. Phys. 76, 257–263 (1994)

    Article  CAS  Google Scholar 

  31. A.E. Morgan, E.K. Broadbent, K.N. Ritz, D.K. Sadana, B.J. Burrow, Interactions of thin Ti films with Si, SiO2, Si3N4, and SiOxNy under rapid thermal annealing. J. Appl. Phys. 64, 344–353 (1988)

    Article  CAS  Google Scholar 

  32. R. Pretorius, J.M. Harris, M.-A. Nicolet, Reaction of thin metal films with SiO2 substrates. Solid-State Electron. 21, 667–675 (1978)

    Article  CAS  Google Scholar 

  33. M. Bouville, D.-Z. Chi, Grain-boundary grooving and agglomeration of alloy thin films with a slow-diffusing species. Phys. Rev. Lett. 98, 085503 (2007)

    Article  Google Scholar 

  34. P. Fredriksson, S. Seetharaman, On the standard Gibbs energy of formation of CoO. Scand. J. Metall. 33, 305–309 (2004)

    Article  CAS  Google Scholar 

  35. D. Adams, T.L. Alford, N.D. Theodore, S.W. Russell, R.L. Spreitzer, J.W. Mayer, Passivation of Cu via refractory metal nitridation in an ammonia ambient. Thin Solid Films 262, 199–208 (1995)

    Article  CAS  Google Scholar 

  36. S. Tsukimoto, T. Morta, M. Moriyama, K. Ito, M. Murakami, Formation of Ti diffusion barrier layers in thin Cu (Ti) alloy films. J. Electron. Mater. 34, 592–598 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Project of Science and Technology of China under Grant 2017ZX02315001, the Opening Projects of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, and the Youth Innovation Promotion Association of CAS under Grant No. 2015097, which are all acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Luo or Jing Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Zhao, C., Luo, J. et al. Experimental investigation of fundamental film properties for Co1−xTix alloying films with different compositions (0 ≤ x≤1). J Mater Sci: Mater Electron 31, 105–114 (2020). https://doi.org/10.1007/s10854-019-01378-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01378-x

Navigation