Skip to main content
Log in

Cobalt germanide contacts: growth reaction, phase formation models, and electrical properties

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

State of the art of cobalt germanide contacts to semiconductor devices is reviewed in this article. First, evolution of contacts is covered from the dawn of the transistor to present day. The history of contact has three stages: (a) elemental metals as direct contacts to the semiconductor with focus on aluminum, (b) self-aligned silicide contacts, and, recently, (c) the paradigm shift that emphasizes the interface contact resistivity. The second section outlines the current role of germanium in the semiconductor industry and the reasons cobalt germanide is an ideal contact material to germanium and silicon germanium semiconductor devices. Fundamental physical properties of cobalt germanides are presented next. Models for phase formation sequence are, then, detailed. This is followed by a comprehensive survey of the experimental results of formation of cobalt germanides. Those results are discussed and reconciled. Factors affecting the resulting phases and their quality are identified and some optimum choices for the experimental parameters are pointed based on the survey. After that, electrical properties of the contact are discussed. The role of germanium crystal orientation in ohmic and Schottky properties of the contact is analyzed. Fermi level pinning (FLP) plays a role mainly on metal/(100) n-type Ge interfaces. The role of FLP is minimal on p-type Ge and other crystalline orientations. Schottky barrier heights (SBH’s) for cobalt and cobalt germanide contacts reported in the literature are surveyed. Mechanisms of FLP and methods adopted by the industry to depin the fermi level at the interface are outlined. The electrical properties section is concluded with a subsection that focuses on the effect of the crystallinity of the contact material on its electrical behavior. Crystalline cobalt germanides are expected to have lower interface resistivities compared to those calculated based on the SBH survey. The role of heat during Co deposition to obtain epitaxial germanides is pointed. Finally, current challenges and future trends of cobalt germanide contacts are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.D. Plummer, M. Deal, P.D. Griffin, Silicon VLSI Technology: Fundamentals, Practice, and Modeling, Chapter 11, (Prentice Hall, Inc., Upper Saddle River, 2000), pp. 681–786

  2. J. Bardeen, W.H. Brattain, Phys. Rev. 74(2), 230–231 (1948) (Image from https://www.extremetech.com/extreme/175004-the-genesis-of-the-transistor-the-single-greatest-discovery-in-the-last-100-years)

    Google Scholar 

  3. Hall, R. N. US2717343A. United States (1955). https://patents.google.com/patent/US2717343A/en?oq=US2717343A

  4. W. Workman, Microelectron. Rel. 7(3), 257–265 (1968)

    Google Scholar 

  5. H. Sello, I.A. Blech, E.H. Snow, J.E. Lawrence, D.L. Duncan, A Study of Failure Mechanisms in Silicon Planar Epitaxial Transistors, https://apps.dtic.mil/docs/citations/AD0800048. Accessed Aug 1966

  6. J. McCarthy, Microelectron. Rel. 9(2), 187–188 (1970)

    Google Scholar 

  7. K. Chino, Solid-State Electron. 16(1), 119–121 (1973)

    Google Scholar 

  8. E.H. Rhoderick, IEE Proc. I—Solid-State Electron Devices 129(1), 1 (1982)

    Google Scholar 

  9. J. Basterfield, J.M. Shannon, A. Gill, Solid-State Electron. 18(3), 290 (1975)

    Google Scholar 

  10. M.-A. Nicolet, Thin Solid Films 52(3), 415–443 (1978)

    Google Scholar 

  11. J.A. Kittl, K. Opsomer, C. Torregiani, C. Demeurisse, S. Mertens, D.P. Brunco, M.J.H. Van Dal, A. Lauwers, Mater. Sci. Eng. B 154–155, 144–154 (2008)

    Google Scholar 

  12. D. Kahng, M.P. Lepselter, Bell Syst. Tech. J. 44(7), 1525–1528 (1965)

    Google Scholar 

  13. H. Hosack, Appl. Phys. Lett. 21(6), 256–257 (1972)

    Google Scholar 

  14. J. Epstein, US3664874A, United States (1972). https://patents.google.com/patent/US3664874/en

  15. Y. Shioya, K. Ikegami, M. Maeda, K. Yanagida, J. Appl. Phys. 61(2), 561–566 (1987)

    Google Scholar 

  16. L.D. Locker, C.D. Capio, J. Appl. Phys. 44(10), 4366–4369 (1973)

    Google Scholar 

  17. C.K. Lau, Y.C. See, D.B. Scott, J.M. Bridges, S.M. Perna, R.D. Davies, in 1982 Int. Electron Devices Meeting (IEDM) (1982), pp. 714–717

  18. C. Lavoie, P. Adusumilli, A.V. Carr, J.S.J. Sweet, A.S. Ozcan, E. Levrau, N. Breil, E. Alptekin, ECS Trans. 77(5), 59–79 (2017)

    Google Scholar 

  19. J.B. Lasky, J.S. Nakos, O.J. Cain, P.J. Geiss, IEEE Trans. Electron Devices 38(2), 262–269 (1991)

    Google Scholar 

  20. J.A. Kittl, D.A. Prinslow, P.P. Apte, M.F. Pas, Appl. Phys. Lett. 67(16), 2308–2310 (1995)

    Google Scholar 

  21. R.W. Mann, L.A. Clevenger, J. Electrochem. Soc. 141(5), 1347–1350 (1994)

    Google Scholar 

  22. C.Y. Ting, F.M. d’Heurle, S.S. Iyer, P.M. Fryer, J. Electrochem. Soc. 133(12), 2621–2625 (1986)

    Google Scholar 

  23. R.W. Mann, G.L. Miles, T.A. Knotts, D.W. Rakowski, L.A. Clevenger, J.M.E. Harper, F.M. D’Heurle, C. Cabral, Appl. Phys. Lett. 67(25), 3729–3731 (1995)

    Google Scholar 

  24. C. Cabral, L.A. Clevenger, J.M.E. Harper, F.M. d’Heurle, R.A. Roy, C. Lavoie, K.L. Saenger, G.L. Miles, R.W. Mann, J.S. Nakos, Appl. Phys. Lett. 71(24), 3531–3533 (1997)

    Google Scholar 

  25. Y.F. Hsieh, L.J. Chen, E.D. Marshall, S.S. Lau, Appl. Phys. Lett. 51(20), 1588–1590 (1987)

    Google Scholar 

  26. M. Niazmand, D. Friedrich, W. Windbracke, Microelectron. Eng. 21(1), 427–430 (1993)

    Google Scholar 

  27. T. Yamazaki, K. Goto, T. Fukano, Y. Nara, T. Sugii, T. Ito, in Proceedings of IEEE Int. Electron Devices Meeting (IEDM) (1993) pp. 906–908

  28. K. Goto, A. Fushida, J. Watanabe, T. Sukegawa, Y. Tada, T. Nakamura, T. Yamazaki, T. Sugii, IEEE Trans. Electron Devices 46(1), 117–124 (1999)

    Google Scholar 

  29. J.P. Lu, D. Miles, J. Zhao, A. Gurba, Y. Xu, C. Lin, M. Hewson, J. Ruan, L. Tsung, R. Kuan, T. Grider, D. Mercer, C. Montgomery, in Digest. Int. Electron Devices Meeting (IEDM) (2002), pp. 371–374

  30. C. Lavoie, F.M. d’Heurle, C. Detavernier, C. Cabral, Microelectron. Eng. 70(2), 144–157 (2003)

    Google Scholar 

  31. C. Detavernier, R.L. Van Meirhaeghe, F. Cardon, K. Maex, Phys. Rev. B 62(18), 12045–12051 (2000)

    Google Scholar 

  32. C. Lavoie, C. Cabral, F.M. d’Heurle, J.L. Jordan-Sweet, J.M.E. Harper, J. Electron. Mater. 31(6), 597–609 (2002)

    Google Scholar 

  33. Z. Wang, D.B. Aldrich, Y.L. Chen, D.E. Sayers, R.J. Nemanich, Thin Solid Films 270(1), 555–560 (1995)

    Google Scholar 

  34. B.E. Deal, A.S. Grove, J. Appl. Phys. 36(12), 3770–3778 (1965)

    Google Scholar 

  35. S. Thompson, N. Anand, M. Armstrong, C. Auth, B. Arcot, M. Alavi et al., in Digest. Int. Electron Devices Meeting (IEDM) (2002), pp. 61–64

  36. J. Strane, D. Brown, C. Lavoie, J. Suenaga, B. Haran, P. Press et al., in 2007 Int. Symp. on VLSI Technol., Syst. Appl. (VLSI-TSA) (2007), pp. 1–2

  37. S. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau et al., IEEE Trans. Electron Devices 51(11), 1790–1797 (2004)

    Google Scholar 

  38. H.B. Zhao, K.L. Pey, W.K. Choi, S. Chattopadhyay, E.A. Fitzgerald, D.A. Antoniadis, P.S. Lee, J. Appl. Phys. 92(1), 214–217 (2002)

    Google Scholar 

  39. P. Gas, F.M. Heurle, Diffusion in silicides, in Diffusion in Semiconductors and Non-metallic Solids, vol. 33A, ed. by D.L. Beke (Springer, Berlin, 1998), pp. 1–38

    Google Scholar 

  40. Y. Tian, Y.-L. Jiang, Y. Chen, F. Lu, B.-Z. Li, Semicond. Sci. Technol. 17(1), 83 (2002)

    Google Scholar 

  41. O.D. Patterson, H.H. Kang, J. Strane, C. Lavoie, K. Barth, X. Ouyang, K. Wu, in 33rd Int. Symp. for Testing and Failure Analysis, ISTFA 2007, November 4, 2007–November 8, 2007 (ASM International, 2007), pp. 270–274

  42. Z. Zhang, J. Atkin, M. Hopstaken, M. Hatzistergos, P. Ronsheim, E. Liniger, R. Laibowitz, P.M. Solomon, IEEE Trans. Electron Devices 59(8), 2027–2032 (2012)

    Google Scholar 

  43. Z. Zhang, F. Pagette, C. D’Emic, B. Yang, C. Lavoie, Y. Zhu et al., IEEE Electron Device Lett. 31(7), 731–733 (2010)

    Google Scholar 

  44. J.A. Kittl, A. Lauwers, O. Chamirian, M.A. Pawlak, M.V. Dal, A. Akheyar et al., MRS Proceedings 810 (2004)

  45. X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski et al., in Int. Electron Devices Meeting 1999. Technical Digest (IEDM) (1999), pp. 67–70

  46. C.Y. Chang, Y.K. Fang, S.M. Sze, Solid-State Electron. 14(7), 541–550 (1971)

    Google Scholar 

  47. A.Y.C. Yu, Solid-State Electron. 13(2), 239–247 (1970)

    Google Scholar 

  48. C. Lin, B. Greene, S. Narasimha, J. Cai, A. Bryant, C. Radens et al., in 2014 IEEE Int. Electron Devices Meeting (IEDM) (2014), pp. 3.8.1–3.8.3

  49. D. Guo, G. Karve, G. Tsutsui, K. Lim, R. Robison, T. Hook et al., in 2016 IEEE Symp. on VLSI Technol. (2016), p. 14

  50. D.K. Schroder, D.L. Meier, IEEE Trans. Electron Devices 31(5), 637–647 (1984)

    Google Scholar 

  51. J.-P. Colinge, C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain et al., Nat. Nanotechnol. 5(3), 225–229 (2010)

    Google Scholar 

  52. L. Wang, H. Yu, M. Schaekers, J. Everaert, D. Mocuta, N. Horiguchi, N. Collaert, K.D. Meyer, Y. Jiang, I.E.E.E. Trans, Electron Devices 65(5), 1869–1872 (2018)

    Google Scholar 

  53. Y.R. Yang, N. Breil, C.Y. Yang, J. Hsieh, F. Chiang, B. Colombeau et al., in 2016 IEEE Symp. on VLSI Technol. (2016), pp. 1–2

  54. H. Yu, M. Schaekers, T. Schram, W. Aderhold, A.J. Mayur, J. Mitard et al., IEEE Electron Device Lett. 37(4), 482–485 (2016)

    Google Scholar 

  55. H. Yu, M. Schaekers, E. Rosseel, A. Peter, J. Lee, W. Song et al., in 2015 IEEE Int. Electron Devices Meeting (IEDM) (2015) pp. 21.7.1–21.7.4

  56. H. Niimi, Z. Liu, O. Gluschenkov, S. Mochizuki, J. Fronheiser, J. Li et al., IEEE Electron Device Lett. 37(11), 1371–1374 (2016)

    Google Scholar 

  57. H. Yu, M. Schaekers, T. Schram, S. Demuynck, N. Horiguchi, K. Barla, N. Collaert, A.V. Thean, K.D. Meyer, IEEE Trans. Electron Devices 63(7), 2671–2676 (2016)

    Google Scholar 

  58. A. Agrawal, J. Lin, M. Barth, R. White, B. Zheng, S. Chopra et al., Appl. Phys. Lett. 104(11), 112101 (2014)

    Google Scholar 

  59. H. Yu, M. Schaekers, J. Zhang, L. Wang, J. Everaet, N. Horiguchi, Y. Jiang, D. Mocuta, N. Collaert, IEEE Trans. Electron Devices 64(2), 500–506 (2017)

    Google Scholar 

  60. M. Tanenbaum, Bell Labs Notebook No. 25505, page 30 (January 26, 1954)

  61. K. Schuegraf, M.C. Abraham, A. Brand, M. Naik, R. Thakur, IEEE J. Electron Devices Soc. 1(3), 66–75 (2013)

    Google Scholar 

  62. C. Claeys, E. Simoen, Germanium-Based Technologies: From Materials to Devices (Elsevier, Oxford, 2007), pp. 246–261

    Google Scholar 

  63. C.O. Chui, K. Gopalakrishnan, P.B. Griffin, J.D. Plummer, K.C. Saraswat, Appl. Phys. Lett. 83(16), 3275–3277 (2003)

    Google Scholar 

  64. K. Kita, K. Kyuno, A. Toriumi, Appl. Phys. Lett. 85(1), 52–54 (2004)

    Google Scholar 

  65. C.O. Chui, L. Kulig, J. Moran, W. Tsai, K.C. Saraswat, Appl. Phys. Lett. 87(9), 091909 (2005)

    Google Scholar 

  66. T. Maeda, K. Ikeda, S. Nakaharai, T. Tezuka, N. Sugiyama, Y. Moriyama, S. Takagi, IEEE Electron Device Lett. 26(2), 102–104 (2005)

    Google Scholar 

  67. S.-L. Zhang, M. Östling, Crit. Rev. Solid State Mater. Sci. 28(1), 1–129 (2003)

    Google Scholar 

  68. S. Gaudet, C. Detavernier, A.J. Kellock, P. Desjardins, C. Lavoie, J. Vac. Sci. Technol. A 24(3), 474–485 (2006)

    Google Scholar 

  69. D.P. Brunco, B.D. Jaeger, G. Eneman, J. Mitard, G. Hellings, A. Satta et al., J. Electrochem. Soc. 155(7), H552–H561 (2008)

    Google Scholar 

  70. D.P. Brunco, K. Opsomer, B.D. Jaeger, G. Winderickx, K. Verheyden, M. Meuris, Electrochem. Solid State Lett. 11(2), H39–H41 (2008)

    Google Scholar 

  71. E. Simoen, K. Opsomer, C. Claeys, K. Maex, C. Detavernier, R.L. Van Meirhaeghe, P. Clauws, Solid State Phenom. 131–133, 47–52 (2008)

    Google Scholar 

  72. L. Lajaunie, M.-L. David, K. Opsomer, E. Simoen, C. Claeys, J.F. Barbot, Solid State Phenom. 131–133, 107–112 (2008)

    Google Scholar 

  73. A. Chawanda, C. Nyamhere, F.D. Auret, W. Mtangi, M. Diale, J.M. Nel, Phys. Status Solidi C 7(2), 248–251 (2010)

    Google Scholar 

  74. R. Jaafar, Y. Nehme, D. Berling, J.L. Bubendorff, A. Mehdaoui, C. Pirri, G. Garreau, C. Uhlaq-Bouillet, Appl. Phys. Lett. 93(3), 033114 (2008)

    Google Scholar 

  75. R. Jaafar, D. Berling, D. Sébilleau, G. Garreau, Phys. Rev. B 81(15), 155423 (2010)

    Google Scholar 

  76. H. Yoon, A.T. Lee, E.-A. Choi, K. Seo, N. Bagkar, J. Cho, Y. Jo, K.J. Chang, B. Kim, J. Am. Chem. Soc. 132(49), 17447–17451 (2010)

    Google Scholar 

  77. E. Adelson, A.E. Austin, J. Phys. Chem. Solids 26(12), 1795–1804 (1965)

    Google Scholar 

  78. V. Janardhanam, J.-S. Kim, K.-W. Moon, K.-S. Ahn, C.-J. Choi, Microelectron. Eng. 89, 10–14 (2012)

    Google Scholar 

  79. H. Dixit, C. Niu, M. Raymond, V. Kamineni, R.K. Pandey, A. Konar et al., IEEE Trans. Electron Devices 64(9), 3775–3780 (2017)

    Google Scholar 

  80. C. Chou, H. Chang, Y. Wu, IEEE Electron Device Lett. 39(1), 91–94 (2018)

    Google Scholar 

  81. E. Koltin, M. Eizenberg, J. Appl. Phys. 71(9), 4604–4611 (1992)

    Google Scholar 

  82. M. Genut, M. Eizenberg, J. Appl. Phys. 68(5), 2146–2157 (1990)

    Google Scholar 

  83. B.S. Joo, H. Kim, S. Jang, D. Han, M. Han, J. Phys. Chem. Solids 119, 309–313 (2018)

    Google Scholar 

  84. N.A. Stolwijk, L. Lerner, J. Appl. Phys. 110(3), 033526 (2011)

    Google Scholar 

  85. K. Opsomer, E. Simoen, C. Claeys, K. Maex, C. Detavernier, R.L. Van Meirhaeghe, S. Forment, P. Clauws, Mater. Sci. Semicond. Process. 9(4), 554–558 (2006)

    Google Scholar 

  86. E. Simoen, K. Opsomer, C. Claeys, K. Maex, C. Detavernier, R.L. Van Meirhaeghe, S. Forment, P. Clauws, Appl. Phys. Lett. 88(18), 183506 (2006)

    Google Scholar 

  87. E. Simoen, K. Opsomer, C. Claeys, K. Maex, C. Detavernier, R.L. Van Meirhaeghe, P. Clauws, J. Appl. Phys. 104(2), 023705 (2008)

    Google Scholar 

  88. K. Ishida, T. Nishizawa, J. Phase Equilib. 12(1), 77–83 (1991)

    Google Scholar 

  89. M. Hansen, Constitution of Binary Alloys (McGraw-Hill, New York, 1958)

    Google Scholar 

  90. N. Audebrand, M. Ellner, E.J. Mittemeijer, J. Alloy. Compd. 353(1), 228–232 (2003)

    Google Scholar 

  91. S.P. Ashburn, M.C. Öztürk, J.J. Wortman, G. Harris, J. Honeycutt, D.M. Maher, J. Electron. Mater. 21(1), 81–86 (1992)

    Google Scholar 

  92. M.A. Rabie, S. Mirza, V. Jarvis, Y.M. Haddara, J. Appl. Phys. 121(14), 145304 (2017)

    Google Scholar 

  93. S.P. Ashburn, M.C. Öztürk, G. Harris, D.M. Maher, J. Appl. Phys. 74(7), 4455–4460 (1993)

    Google Scholar 

  94. C. Krontiras, S.N. Georga, S. Sakkopoulos, E. Vitoratos, J. Salmi, J. Phys. 2(14), 3323 (1990)

    Google Scholar 

  95. K. Park, C.-H. An, M.S. Lee, C.-W. Yang, H.-J. Lee, H. Kim, J. Electrochem. Soc. 156(4), H229–H232 (2009)

    Google Scholar 

  96. R.S. Howell, G. Sarcona, S.K. Saha, M.K. Hatalis, J. Vac. Sci. Technol. A 18(1), 87–93 (2000)

    Google Scholar 

  97. R.T. Tung, J.M. Poate, J.C. Bean, J.M. Gibson, D.C. Jacobson, Thin Solid Films 93(1), 77–90 (1982)

    Google Scholar 

  98. R. Pretorius, T.K. Marais, C.C. Theron, Mater. Sci. Eng. Rep. 10(1), 1–83 (1993)

    Google Scholar 

  99. R.M. Walser, R.W. Bené, Appl. Phys. Lett. 28(10), 624–625 (1976)

    Google Scholar 

  100. L.J. Chen, Silicide Technology for Integrated Circuits (Institution of Electrical Engineers, 2004), p. 22

  101. R.W. Bené, Appl. Phys. Lett. 41(6), 529–531 (1982)

    Google Scholar 

  102. M. Wittmer, M.-A. Nicolet, J.W. Mayer, Thin Solid Films 42(1), 51–59 (1977)

    Google Scholar 

  103. M.A. Rabie, I. Aden-Ali, Y.M. Haddara, in 2017 Int. Conf. on Simul. of Semicond. Processes and Devices (SISPAD) (2017), pp. 69–72

  104. S. Dhar, V.N. Kulkarni, Thin Solid Films 333(1), 20–24 (1998)

    Google Scholar 

  105. A. Tsuruta, W.G. Chu, K. Tamura, H. Ishii, M. Owari, Y. Nihei, Surf. Interface Anal. 37(2), 230–234 (2005)

    Google Scholar 

  106. G.A. Smith, L. Luo, S. Hashimoto, W.M. Gibson, N. Lewis, J. Vac. Sci. Technol. A 7(3), 1475–1478 (1989)

    Google Scholar 

  107. J. Shi, D. Ishii, M. Hashimoto, A. Barna, P.B. Barna, Y. Haga, O. Nittono, J. Cryst. Growth 222(1), 235–242 (2001)

    Google Scholar 

  108. J. Choi, D.K. Lim, Y. Kim, S. Kim, J. Phys. Chem. C 114(19), 8992–8996 (2010)

    Google Scholar 

  109. A. Vantomme, S. Degroote, J. Dekoster, G. Langouche, R. Pretorius, Appl. Phys. Lett. 74(21), 3137–3139 (1999)

    Google Scholar 

  110. H.P. Sun, Y.B. Chen, X.Q. Pan, D.Z. Chi, R. Nath, Y.L. Foo, Appl. Phys. Lett. 86(7), 071904 (2005)

    Google Scholar 

  111. I. Goldfarb, G.A.D. Briggs, J. Vac. Sci. Technol. B 20(4), 1419–1426 (2002)

    Google Scholar 

  112. M. Ewert, T. Schmidt, J.I. Flege, I. Heidmann, T. Grzela, W.M. Klesse et al., Nanotechnology 27(32), 325705 (2016)

    Google Scholar 

  113. A.P. Peter, K. Opsomer, C. Adelmann, A. van Ammel, J. Meersschaut, A. Moussa et al., J. Mater. Chem. C 2(10), 1904–1912 (2014)

    Google Scholar 

  114. K. Prabhakaran, T. Ogino, Appl. Surf. Sci. 100–101, 518–521 (1996)

    Google Scholar 

  115. T. Grzela, W. Koczorowski, G. Capellini, R. Czajka, M.W. Radny, N. Curson, S.R. Schofield, M.A. Schubert, T. Schroeder, J. Appl. Phys. 115(7), 074307 (2014)

    Google Scholar 

  116. H.P. Sun, Y.B. Chen, X.Q. Pan, D.Z. Chi, R. Nath, Y.L. Foo, Appl. Phys. Lett. 87(21), 211909 (2005)

    Google Scholar 

  117. K. Opsomer, D. Deduytsche, C. Detavernier, R.L. Van Meirhaeghe, A. Lauwers, K. Maex, C. Lavoie, Appl. Phys. Lett. 90(3), 031906 (2007)

    Google Scholar 

  118. A. Chawanda, C. Nyamhere, F.D. Auret, W. Mtangi, T.T. Hlatshwayo, M. Diale, J.M. Nel, Physica B 404(22), 4482–4484 (2009)

    Google Scholar 

  119. L. Lajaunie, M.L. David, F. Pailloux, C. Tromas, E. Simoen, C. Claeys, J.F. Barbot, Mater. Sci. Semicond. Process. 11(5), 300–304 (2008)

    Google Scholar 

  120. L. Lajaunie, M.L. David, J.F. Barbot, J. Phys. D 44(12), 125103 (2011)

    Google Scholar 

  121. K.D. Keyser, R.L.V. Meirhaeghe, C. Detavernier, J. Jordan-Sweet, C. Lavoie, J. Electrochem. Soc. 157(4), H395–H404 (2010)

    Google Scholar 

  122. Y. Hoshi, K. Sawano, K. Hamaya, M. Miyao, Y. Shiraki, Appl. Phys. Express 5(1), 015701 (2011)

    Google Scholar 

  123. S. Cea, Multidimensional viscoelastic modeling of silicon oxidation and titanium silicidation, Ph.D. Thesis, University of Florida, 1996

  124. R.R. Lieten, S. Degroote, M. Kuijk, G. Borghs, Appl. Phys. Lett. 92(2), 022106 (2008)

    Google Scholar 

  125. S.-D. Kim, C.-M. Park, J.C.S. Woo, IEEE Trans. Electron Devices 49(3), 467–472 (2002)

    Google Scholar 

  126. K. Saraswat, Shallow Junctions & Contacts, (Stanford, 2018). http://web.stanford.edu/class/ee311/NOTES/Shallow%20Junctions%20Slides.pdf. Accessed 18 Dec 2018

  127. K. Kasahara, S. Yamada, K. Sawano, M. Miyao, K. Hamaya, Phys. Rev. B 84(20), 205301 (2011)

    Google Scholar 

  128. A. Dimoulas, P. Tsipas, A. Sotiropoulos, E.K. Evangelou, Appl. Phys. Lett. 89(25), 252110 (2006)

    Google Scholar 

  129. T. Nishimura, K. Kita, A. Toriumi, Appl. Phys. Lett. 91(12), 123123 (2007)

    Google Scholar 

  130. Y. Zhou, M. Ogawa, X. Han, K.L. Wang, Appl. Phys. Lett. 93(20), 202105 (2008)

    Google Scholar 

  131. D. Han, Y. Wang, D. Tian, W. Wang, X. Liu, J. Kang, R. Han, Microelectron. Eng. 82(2), 93–98 (2005)

    Google Scholar 

  132. A. Chawanda, C. Nyamhere, F.D. Auret, W. Mtangi, M. Diale, J.M. Nel, J. Alloys Compd. 492(1), 649–655 (2010)

    Google Scholar 

  133. H.B. Yao, D.Z. Chi, R. Li, S.J. Lee, D.-L. Kwong, Appl. Phys. Lett. 89(24), 242117 (2006)

    Google Scholar 

  134. A. Thanailakis, D.C. Northrop, Solid-State Electron. 16(12), 1383–1389 (1973)

    Google Scholar 

  135. K. Yamane, K. Hamaya, Y. Ando, Y. Enomoto, K. Yamamoto, T. Sadoh, M. Miyao, Appl. Phys. Lett. 96(16), 162104 (2010)

    Google Scholar 

  136. E. Guo, Z. Zeng, Y. Zhang, X. Long, H. Zhou, X. Wang, Microelectron. Rel. 62, 63–69 (2016)

    Google Scholar 

  137. S. Sun, Y. Sun, Z. Liu, D.-I. Lee, S. Peterson, P. Pianetta, Appl. Phys. Lett. 88(2), 021903 (2006)

    Google Scholar 

  138. K. Prabhakaran, F. Maeda, Y. Watanabe, T. Ogino, Appl. Phys. Lett. 76(16), 2244–2246 (2000)

    Google Scholar 

  139. J. Lauwaert, J. Van Gheluwe, J. Vanhellemont, E. Simoen, P. Clauws, J. Appl. Phys. 105(7), 073707 (2009)

    Google Scholar 

  140. F.D. Auret, W.E. Meyer, S. Coelho, M. Hayes, Appl. Phys. Lett. 88(24), 242110 (2006)

    Google Scholar 

  141. E. Simoen, C. Claeys, S. Sioncke, J. Van Steenbergen, M. Meuris, S. Forment, J. Vanhellemont, P. Clauws, A. Theuwis, J. Mater. Sci. 18(7), 799–804 (2007)

    Google Scholar 

  142. E. Gaubas, J. Vanhellemont, E. Simoen, A. Theuwis, P. Clauws, MRS Proceedings 994 (2007)

  143. C.S. Wu, D.M. Scott, W. Chen, S.S. Lau, J. Electrochem. Soc. 132(4), 918–922 (1985)

    Google Scholar 

  144. M. Kuzmin, P. Laukkanen, J. Makela, M. Tuominen, M. Yasir, J. Dahl, M.P.J. Punkkinen, K. Kokko, Phys. Rev. B 94(3), 035421 (2016)

    Google Scholar 

  145. P. Tsipas, A. Dimoulas, Appl. Phys. Lett. 94(1), 012114 (2009)

    Google Scholar 

  146. K. Kasahara, S. Yamada, T. Sakurai, K. Sawano, H. Nohira, M. Miyao, K. Hamaya, Appl. Phys. Lett. 104(17), 172109 (2014)

    Google Scholar 

  147. J.R. Weber, A. Janotti, P. Rinke, C.G. Van de Walle, Appl. Phys. Lett. 91(14), 142101 (2007)

    Google Scholar 

  148. A. Stesmans, Appl. Phys. Lett. 68(15), 2076–2078 (1996)

    Google Scholar 

  149. V.V. Afanas’ev, Y.G. Fedorenko, A. Stesmans, Appl. Phys. Lett. 87(3), 032107 (2005)

    Google Scholar 

  150. P. Broqvist, A. Alkauskas, A. Pasquarello, Phys. Rev. B 78(7), 075203 (2008)

    Google Scholar 

  151. M. Houssa, G. Pourtois, M. Caymax, M. Meuris, M.M. Heyns, V.V. Afanas’ev, A. Stesmans, Appl. Phys. Lett. 93(16), 161909 (2008)

    Google Scholar 

  152. S. Baldovino, A. Molle, M. Fanciulli, Appl. Phys. Lett. 96(22), 222110 (2010)

    Google Scholar 

  153. S. Paleari, S. Baldovino, A. Molle, M. Fanciulli, Phys. Rev. Lett. 110(20), 206101 (2013)

    Google Scholar 

  154. Y.-C. Yeo, T.-J. King, C. Hu, J. Appl. Phys. 92(12), 7266–7271 (2002)

    Google Scholar 

  155. S.G. Louie, M.L. Cohen, Phys. Rev. B 13(6), 2461–2469 (1976)

    Google Scholar 

  156. D.A. Muller, D.A. Shashkov, R. Benedek, L.H. Yang, J. Silcox, D.N. Seidman, Phys. Rev. Lett. 80(21), 4741–4744 (1998)

    Google Scholar 

  157. R.L. Thornton, Electron. Lett. 17(14), 485–486 (1981)

    Google Scholar 

  158. V. Kamineni, A. Carr, C. Niu, P. Adusumilli, T. Abrams, R. Xiel et al., in 2018 IEEE Int. Interconnect Technol. Conf. (IITC) (2018), pp. 28–29

  159. Z. Li, The Source/Drain Engineering of Nanoscale Germanium-Based MOS Device, Chapter 2 (Springer, 2016) pp. 11–26.

  160. M. Mueller, Q.T. Zhao, C. Urban, C. Sandow, D. Buca, S. Lenk, S. Estevez, S. Mantl, Mater. Sci. Eng. B 154–155, 168–171 (2008)

    Google Scholar 

  161. H.G. Grimmeiss, L. Montelius, K. Larsson, Phys. Rev. B 37(12), 6916–6928 (1988)

    Google Scholar 

  162. Y. Tong, B. Liu, P.S.Y. Lim, Y. Yeo, IEEE Electron Device Lett. 33(6), 773–775 (2012)

    Google Scholar 

  163. K. Ikeda, Y. Yamashita, N. Sugiyama, N. Taoka, S. Takagi, Appl. Phys. Lett. 88(15), 152115 (2006)

    Google Scholar 

  164. A.V. Thathachary, K.N. Bhat, N. Bhat, M.S. Hegde, Appl. Phys. Lett. 96(15), 152108 (2010)

    Google Scholar 

  165. M. Kobayashi, A. Kinoshita, K. Saraswat, H.-P. Wong, Y. Nishi, in 2008 Symp. on VLSI Tech. (2008) pp. 54–55

  166. D. Connelly, C. Faulkner, D.E. Grupp, J.S. Harris, IEEE Trans. Nanotechnol. 3(1), 98–104 (2004)

    Google Scholar 

  167. G.-S. Kim, S.-W. Kim, S.-H. Kim, J. Park, Y. Seo, B.J. Cho, C. Shin, J.H. Shim, H.-Y. Yu, ACS Appl. Mater. Interfaces 8(51), 35419–35425 (2016)

    Google Scholar 

  168. Z. Li, X. An, Q. Yun, M. Lin, X. Zhang, R. Huang, ECS Solid State Lett. 1(4), Q33–Q34 (2012)

    Google Scholar 

  169. Y. Zhou, W. Han, Y. Wang, F. Xiu, J. Zou, R.K. Kawakami, K.L. Wang, Appl. Phys. Lett. 96(10), 102103 (2010)

    Google Scholar 

  170. M. Kobayashi, A. Kinoshita, K. Saraswat, H.-S.P. Wong, Y. Nishi, J. Appl. Phys. 105(2), 023702 (2009)

    Google Scholar 

  171. H.D. Wu, C. Wang, J.B. Wei, W. Huang, C. Li, H.K. Lai, J. Li, C. Liu, S.Y. Chen, IEEE Electron Device Lett. 35(12), 1188–1190 (2014)

    Google Scholar 

  172. P. Ranade, Y.-K. Choi, D. Ha, A. Agarwal, M. Ameen, T.-J. King, in Digest. Int. Electron Devices Meeting (IEDM) (2002), pp. 363–366

  173. R. Smoluchowski, Phys. Rev. 60(9), 661–674 (1941)

    Google Scholar 

  174. C.R. Wronski, D.E. Carlson, R.E. Daniel, Appl. Phys. Lett. 29(9), 602–605 (1976)

    Google Scholar 

  175. K.E. Mello, S.P. Murarka, T.-M. Lu, S.L. Lee, J. Appl. Phys. 81(11), 7261–7267 (1997)

    Google Scholar 

  176. S.M. Sze, K.K. Ng, Physics of semiconductor devices, 3rd edn. (Wiley, New York, 2007), p. 353

    Google Scholar 

  177. J.D. Blauwe, IEEE Trans. Nanotechnol. 99(1), 72–77 (2002)

    Google Scholar 

  178. I. Goldfarb, G.A.D. Briggs, J. Mater. Res. 16(3), 744–752 (2001)

    Google Scholar 

  179. K. Kanematsu, K. Yasukōchi, T. Ohoyama, J. Phys. Soc. Jpn. 18(10), 1429–1436 (1963)

    Google Scholar 

  180. A. Dayer, P. Feschotte, J. Less-Common Met. 72(1), 51–70 (1980)

    Google Scholar 

  181. T.H. Phung, R. Xie, S. Tripathy, M. Yu, C. Zhu, J. Electrochem. Soc. 157(2), H208–H213 (2010)

    Google Scholar 

  182. R.F. Pierret, Semiconductor Device Fundamentals (Addison-Wesley Publishing Company Inc, New York, 1996), pp. 477–500

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Rabie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabie, M.A., Mirza, S., Hu, Y. et al. Cobalt germanide contacts: growth reaction, phase formation models, and electrical properties. J Mater Sci: Mater Electron 30, 10031–10063 (2019). https://doi.org/10.1007/s10854-019-01366-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01366-1

Navigation