Skip to main content
Log in

Fabrication of aligned carbon-fiber/polymer TIMs using electrostatic flocking method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Directional assembly of anisotropic appearance filler in the composite is an effective way to obtain higher thermal conductivity thermal interface materials (TIMs). In this study, vertically aligned carbon fiber (VACF) scaffold reinforced polymer TIMs were fabricated using electrostatic flocking method, in which the aligned carbon fibers formed efficient heat conduction paths through the polymer matrix. By using high thermal conductivity mesophase pitch-based carbon fibers (mPCF) as filler, the maximum through plane thermal conductivity of the TIM with 13.4 wt% mPCF could reach up to 15.3 W/(m K), 60.2 times higher than that of the matrix, and the TIM also performed excellent flexibility. The influence of electrostatic flocking parameters on flocking effect was investigated. It is found that the electric field strength and the conductivity of fibers were the major factors to affect the vertical ratio of the mPCFs, and proper panels distance and fiber length were needed to acquire better flocking effect. In addition, the charging regular and the motion mechanism of fibers in electrostatic field were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.L. Moore, L. Shi, Mater. Today 17(4), 163–174 (2014)

    Article  Google Scholar 

  2. D.D.L. Chung, J. Mater. Eng. Perform. 10(1), 56–59 (2001)

    Article  Google Scholar 

  3. R. Prasher, Proc. IEEE 94(8), 1571–1586 (2006)

    Article  Google Scholar 

  4. X. Huang, P. Jiang, L. Xie, Appl. Phys. Lett. 95(24), 242901 (2009)

    Article  Google Scholar 

  5. S. Yu, J.W. Lee, T.H. Han, ACS Appl. Mater. Interfaces 5(22), 11618–11622 (2013)

    Article  Google Scholar 

  6. A. Saboori, M. Pavese, C. Badini, P. Fino, Acta Metall. Sin. 30(7), 675–687 (2017)

    Article  Google Scholar 

  7. H.B. Cho, T. Nakayama, H. Suematsu, Compos. Sci. Technol. 129, 205–213 (2016)

    Article  Google Scholar 

  8. H. Ding, Y. Guo, S.N. Leung, J. Appl. Polym. Sci. 133(4), 42910 (2016)

    Article  Google Scholar 

  9. S.G. Mosanenzadeh, H.E. Naguib, Compos. Part B 85, 24–30 (2016)

    Article  Google Scholar 

  10. S. He, J. Hu, C. Zhang, Polym. Test. 67, 295–301 (2018)

    Article  Google Scholar 

  11. H. Yu, L. Li, T. Kido, J. Appl. Polym. Sci. 124(1), 669–677 (2012)

    Article  Google Scholar 

  12. J.P. Cao, J. Zhao, X. Zhao, Compos. Sci. Technol. 89, 142–148 (2013)

    Article  Google Scholar 

  13. Y. Xu, X. Li, H. Wang, J. Appl. Polym. Sci. 136(2), 46929 (2018)

    Article  Google Scholar 

  14. Z.D. Han, A. Fina, Prog. Polym. Sci. 36(7), 914–944 (2011)

    Article  Google Scholar 

  15. Q. Li, Y. Guo, W. Li, Chem. Mater. 26(15), 4459–4465 (2014)

    Article  Google Scholar 

  16. A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M.E. Itkis, R.C. Haddon, Adv. Mater. 20(24), 4740–4744 (2008)

    Article  Google Scholar 

  17. X. Huang, C. Zhi, P. Jiang, J. Phys. Chem. C 116(44), 23812–23820 (2012)

    Article  Google Scholar 

  18. Q. Liao, Z. Liu, W. Liu, C. Deng, N. Yang, Sci. Rep. 5, 16543 (2015)

    Article  Google Scholar 

  19. W. Zhao, J. Kong, H. Liu, Nanoscale 8(48), 19984–19993 (2016)

    Article  Google Scholar 

  20. Y.F. Zhang, D. Han, Y.H. Zhao, Carbon 109, 552–557 (2016)

    Article  Google Scholar 

  21. Y.F. Zhang, Y.J. Ren, S.L. Bai, Int. J Heat. Mass Transf. 118, 510–517 (2018)

    Article  Google Scholar 

  22. A.M. Marconnet, N. Yamamoto, M.A. Panzer, ACS Nano 5(6), 4818–4825 (2011)

    Article  Google Scholar 

  23. H.B. Cho, A. Konno, T. Fujihara, Compos. Sci. Technol. 72(1), 112–118 (2011)

    Article  Google Scholar 

  24. S. Wu, R.B. Lalani, J. Zhang, Carbon 94, 607–618 (2015)

    Article  Google Scholar 

  25. B. Li, S. Dong, X. Wu, Compos. Sci. Technol. 147, 52–61 (2017)

    Article  Google Scholar 

  26. K. Uetani, S. Ata, S. Tomonoh, T. Yamada, M. Yumura, K. Hata, Adv. Mater. 26(33), 5857–5862 (2014)

    Article  Google Scholar 

  27. I. Dogu, Text. Res. J. 45(7), 521–532 (1975)

    Article  Google Scholar 

  28. Y.K. Kim, Flocked Fabrics and Structures: Specialist Yarn and Fabric Structures, 1st edn. (Woodhead, Cambridge, 2011), pp. 287–317

    Book  Google Scholar 

  29. G.B. Cho, J.S. Jeong, M.R. Chae, J.P. Noh, K.K. Cho, J.K. Kim, H.J. Ahn, T.H. Nam, K.W. Kim, Surf. Coat. Technol. 326, 443–449 (2016)

    Article  Google Scholar 

  30. B. Tang, G. Hu, H. Gao, Int. J. Heat. Mass Transf. 85, 420–429 (2015)

    Article  Google Scholar 

  31. Z. Lin, Y. Liu, ACS Appl. Mater. Interfaces 5(15), 7633–7640 (2013)

    Article  Google Scholar 

  32. M.A. Raza, A.V.K. Westwood, A.P. Brown, C. Stirling, J. Mater. Sci.: Mater. Electron. 23(10), 1855–1863 (2012)

    Google Scholar 

  33. W.T. Hong, N.H. Tai, Diam. Relat. Mater. 18(7–10), 1571–1577 (2008)

    Google Scholar 

  34. Y. Hwang, M. Kim, J. Kim, Compos. Part A 55, 195–202 (2013)

    Article  Google Scholar 

  35. H. Im, J. Kim, Carbon 50(15), 5429–5440 (2012)

    Article  Google Scholar 

  36. S.H. Jeong, S. Chen, J. Huo, E.K. Gamstedt, J. Liu, S.L. Zhang, Z.B. Zhang, K. Hjort, Z. Wu, Sci. Rep. 5, 18257 (2015)

    Article  Google Scholar 

  37. M.B. Jakubinek, M.A. White, M. Mu, Appl. Phys. Lett. 96(8), 083105 (2010)

    Article  Google Scholar 

  38. J. Xu, A. Munari, E. Dalton, J. Appl. Phys. 106(12), 124310 (2009)

    Article  Google Scholar 

  39. J. Hong, J. Lee, C.K. Hong, Curr. Appl. Phys. 10(1), 359–363 (2010)

    Article  Google Scholar 

  40. M.A. Raza, A.V.K. Westwood, C. Stirling, Compos. Sci. Technol. 120, 9–16 (2015)

    Article  Google Scholar 

  41. J. Hu, Y. Huang, X. Zeng, Compos. Sci. Technol. 160, 127–137 (2018)

    Article  Google Scholar 

  42. Z. Yuan, J. Yu, Z. He, Fiber Polym. 15(12), 2581–2590 (2014)

    Article  Google Scholar 

  43. S.H. Chung, H. Kim, S.W. Jeong, Carbon 140, 24–29 (2018)

    Article  Google Scholar 

  44. C. Chen, H. Wang, T. Zhang, J. Mater. Sci. Technol. 35(1), 36–43 (2019)

    Article  Google Scholar 

  45. Y.H. Bae, M.J. Yu, M.C. Vu, Compos. Sci. Technol. 155, 144–150 (2018)

    Article  Google Scholar 

  46. K. Ahn, K. Kim, J. Kim, Ceram. Int. 41(8), 9488–9495 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from Ministry of Science and Technology of the People’s Republic of China (Grant No. 2013YQ120355).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingdong Guo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Wei, S. & Guo, J. Fabrication of aligned carbon-fiber/polymer TIMs using electrostatic flocking method. J Mater Sci: Mater Electron 30, 10233–10243 (2019). https://doi.org/10.1007/s10854-019-01360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01360-7

Navigation