Investigation of structural, optical, electrochemical and dielectric properties of SnO2/GO nanocomposite

Abstract

We report the synthesis of tin dioxide/graphene oxide (SnO2/GO) nanocomposite through simple hydrothermal method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirm the rutile tetragonal structure of the nanocomposite with average particle size of 13.37 ± 3.57 nm. The presence of only Sn, O and C in the EDX spectrum confirms the purity of our sample and a large defect density in the composite is found. The 3.7 eV band gap energy, determined by ultra-violet (UV) and photoluminescence (PL), of the nanocomposite is compatible with that of SnO2. Electrochemical measurements have shown that the material has a nice reversible redox process, suggesting its good capacitive behavior as well as a very low internal and charge transfer resistances of 1.43 Ω and 2.12 Ω, respectively. An increase in dielectric constant is observed, which is attributed to small grain size and high defect density. Conduction takes place through hopping process and the rapid increase in conductivity at high frequencies is due to increase in charge density (detached charges from traps + conduction electrons).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    C. Zhao, X. Wang, J. Kong, J.M. Ang, P.S. Lee, X. Lu, C. Zhao, Liu, Self-Assembly-Induced Alternately Stacked Single-Layer MoS2 and N-doped Graphene: a novel van der Waals heterostructure for lithium-ion batteries. ACS Appl. Mater. Interfaces. 8, 2372 (2016)

    Article  Google Scholar 

  2. 2.

    M. Wang, H. Zhang, C. Wang, X. Hu, G. Wang, Direct electro synthesis of poly-o-phenylenediamine bulk materials for supercapacitor application. Electrochem. Acta. 91, 144 (2013)

    Article  Google Scholar 

  3. 3.

    J. Zhang, J. Zhao, L. Yue, Q. Wang, J. Chai, Z. Liu, X. Zhou, H. Li, Y. Guo, G. Cui, L. Chen, High performance solid polymer electrolytes for rechargeable batteries a self-catalyzed strategy toward facile synthesis. Adv. Energy Mater. 5, 150–1082 (2015)

    Google Scholar 

  4. 4.

    Y. Zhang, Q. Ji, G.F. Han, J. Ju, J. Shi, D. Ma, J. Sun, Y. Zhang, M. Li, X.Y. Lang, Y. Zhang, Z. Liu, Dendritic, transferable, strictly monolayer MoS2 flakes synthesized on SrTiO3 single crystals for efficient electro catalytic applications. ACS Nano 8, 8617 (2014)

    Article  Google Scholar 

  5. 5.

    C.M. Torres Jr., Y.W. Lan, C. Zeng, J.H. Chen, X. Kou, A. Navabi, J. Tang, M. Montazeri, J.R. Adleman, M.B. Lerner, Y.L. Zhong, L.J. Li, C.D. Chen, K.L. Wang, High-current gain two-dimensional MOS2-base hot-electron transistors. Nano Lett. 15, 7905 (2015)

    Article  Google Scholar 

  6. 6.

    Y. Tan, R. He, C. Cheng, D. Wang, Y. Chen, F. Chen, Manageable N-doped graphene for high performance oxygen reduction reaction. Sci. Rep. 4, 7523 (2014)

    Article  Google Scholar 

  7. 7.

    X. Xiong, W. Luo, X. Hu, C. Chen, L. Qie, D. Hou, Y. Huang, Flexible membranes of MOS2/C nano fibers by electro spinning as binder-free anodes for high-performance sodium-ion batteries. Sci. Rep. 5, 9254 (2015)

    Article  Google Scholar 

  8. 8.

    L.X. Alvarez, A.B. Sorokin, J. Organomet, Mild oxidation of ethane to acetic acid by H2O2 catalyzed by supported mu-nitride diiron phthalocyanines. Chem. 793, 139 (2015)

    Google Scholar 

  9. 9.

    V.S. Arutyunov, L.N. Strekova, A.V. Nikitin, Partial oxidation of light alkanes as a base of new generation of gas chemical processes. Eurasian Chem. Technol. J. 15, 265 (2013)

    Article  Google Scholar 

  10. 10.

    Z. Cong, O. Shoji, C. Kasai, N. Kawakami, H. Sugimoto, Y. Shiro, Y. Watanabe, Activation of wild-type cytochrome P450BM3 by the Next generation of decoy molecules: enhanced hydroxylation of gaseous alkanes and crystallographic evidence. ACS Catal. 5, 150 (2015)

    Article  Google Scholar 

  11. 11.

    Z. Wang, L. Ma, W. Chen, G. Huang, D. Chen, L. Wang, J.Y. Lee, Facile synthesis of MoS2/graphene composites: effects of different cationic surfactants on microstructures and electrochemical properties of reversible lithium storage. RSC Adv. 3, 21675 (2013)

    Article  Google Scholar 

  12. 12.

    Z. Guo, D. Zhou, X. Dong, Z. Qiu, Y. Wang, Y. Xia, Ordered hierarchical mesoporous/macro porous carbon: a high-performance catalyst for rechargeable Li–O2 batteries. Adv. Mater. 25, 5668 (2013)

    Article  Google Scholar 

  13. 13.

    M. Zhang, Z. Huang, X. Wang, H. Zhang, T. Li, Z. Wu, Y. Luo, W. Cao, Magnetic MoS2 pizzas and sandwiches with Mnn (n = 1–4) cluster toppings and fillings: a first-principles investigation. Sci. Rep. 6, 19504 (2016)

    Article  Google Scholar 

  14. 14.

    J. Luxa, O. Jankovsky, D. Sedmidubsky, R. Medlin, M. Marysko, M. Pumera, Z. Sofer, Origin of exotic ferromagnetic behavior in exfoliated layered transition metal dichalcogenide MoS2 and WS2. Nanoscale 8, 1960 (2016)

    Article  Google Scholar 

  15. 15.

    D. Cao, H.B. Shu, T.Q. Wu, Z.T. Jiang, Z.W. Jiao, M.Q. Cai, W.Y. Hu, First-principles study of the origin of magnetism induced by intrinsic defects in monolayer MoS2. Appl. Surf. Sci. 361, 199–205 (2016)

    Article  Google Scholar 

  16. 16.

    D. Voiry et al., Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013)

    Article  Google Scholar 

  17. 17.

    Rao, C. N., Gopalakrishnan, K. & Maitra, Comparative study of potential applications of graphene, MoS2, and other two dimensional materials in energy devices, sensors, and related areas. ACS Appl. Mater. Interfaces 7, 7809–7832 (2015)

  18. 18.

    G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)

    Article  Google Scholar 

  19. 19.

    X. Wang et al., High supercapacitor and adsorption behaviors of flower-like MoS2 nanostructures. J. Mater. Chem. A 2, 15958–15963 (2014)

    Article  Google Scholar 

  20. 20.

    D. Davies, A. Lipman, A.L. Silver, A.C.C. Tseung, On the effect of anode material in electrophoresis on the emission color of a zinc sulfide phosphor. Eletrochem. Solid State Lett. 4, 1–12 (2001)

    Article  Google Scholar 

  21. 21.

    Zainab Iqbal Zulfiqar, Yuliang Yuan, Lu Jianguo, Structural, optical, dielectric and magnetic properties of Zn-doped SnO2 nanoparticles. Int. J. Modern Phys. B 31, 1750234 (2017)

    Article  Google Scholar 

  22. 22.

    J. Wang et al., Synthesis and characterization of nanosize cobalt sulfide for rechargeable lithium batteries. J. Power Sources 159, 287–290 (2006)

    Article  Google Scholar 

  23. 23.

    Q. Wang et al., Facile synthesis and superior supercapacitor performances of three-dimensional cobalt sulfide hierarchitectures. Cryst. Eng. Commun. 13, 59–60 (2011)

    Google Scholar 

  24. 24.

    Yuliang Yuan Zulfiqar, Qingjun Jiang, Jie Yang, Weicheng Wang LishaFeng, Zhizhen Ye, Lu Jianguo, Variation in luminescence and bandgap of Zn-doped SnO2 nanoparticles with thermal decomposition. J. Mater. Sci.: Mater. Electron. 27, 9541–9549 (2016)

    Google Scholar 

  25. 25.

    N. Kumar, N. Raman, A. Sundaresan, Synthesis and properties of cobalt sulfide phases: CoS2 and Co9S8. Zeitschrift für Anorg. Und Allg Chem. 640, 1069–1074 (2014)

    Article  Google Scholar 

  26. 26.

    Y. Sun et al., Electrodeposited cobalt-sulfide catalyst for electrochemical and photo electrochemical hydrogen generation from water. Nanoscale 10, 3–6 (2013)

    Google Scholar 

  27. 27.

    Yuliang Yuan Zulfiqar, Jie Yang, Weicheng Wang, Zhizhen Ye, Lu Jianguo, Structural and optical properties of (Zn, Co) co-doped SnO2 nanoparticles. Mater. Sci.: Mater. Electron. 27, 12119–12127 (2016)

    Google Scholar 

  28. 28.

    Hongdong Liu, Jiamu Huang, Xinlu Li, Jia Liu, Yuxin Zhang, Du Kun, Flower-like SnO2/graphene composite for high-capacity lithium storage. Appl. Surf. Sci. 258, 4917–4921 (2012)

    Article  Google Scholar 

  29. 29.

    B. Qu et al., β-cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors. Nanoscale 4, 7806–7810 (2012)

    Google Scholar 

  30. 30.

    H. Wan et al., Hydrothermal synthesis of cobalt sulfide nanotubes: the size control and its application in supercapacitors. J. Power Sources 243, 396–402 (2013)

    Article  Google Scholar 

  31. 31.

    W. Dong et al., Hydrothermal synthesis and structure evolution of hierarchical cobalt sulfide nanostructures. Dalton Trans. 40, 243–248 (2011)

    Article  Google Scholar 

  32. 32.

    W. Gapel, K.D. Schierbaum, Schierbaum SnO2 sensors: current status and future prospects. Sens. Actuators B 26–27, 1–12 (1995)

    Article  Google Scholar 

  33. 33.

    Yuliang Yuan Zulfiqar, Jie Yang, Weicheng Wang, Zhizhen Ye, Lu Jianguo, Structural, dielectric and ferromagnetic behavior of (Zn, Co) co-doped SnO2 nanoparticles. Ceram. Int. 42, 17128–17136 (2016)

    Article  Google Scholar 

  34. 34.

    H. Wang, J.T. Robinson, X. Li, H. Dai, Solvothermal reduction of chemically 793 exfoliated graphene sheets. J. Am. Chem. Soc. 131, 9910–9911 (2009)

    Article  Google Scholar 

  35. 35.

    G. Huang, T. Chen, Z. Wang, K. Chang, W. Chen, Synthesis and electrochemical performances of cobalt sulfides/graphene nanocomposites as anode material of Li-ion battery. J. Power Sources 235, 122–128 (2013)

    Article  Google Scholar 

  36. 36.

    Q. Guo, X. Qin, High capacity of SnO2 nanoparticles decorated graphene as an anode for lithium-ion batteries. ECS Solid State Lett. 2, 41–43 (2013)

    Article  Google Scholar 

  37. 37.

    J. Wang, Y. Xu, X. Chen, X. Du, Electrochemical supercapacitor electrode material based on poly(3,4-ethylenedioxythiophene)/polypyrrole composite. J. Power Sources 163, 1120–1125 (2007)

    Article  Google Scholar 

  38. 38.

    Y. Song, T.W. Noh, S.-I. Lee, J.R. Gaines, Experimental study of the three-dimensional ac conductivity and dielectric constant of a conductor-insulator composite near the percolation threshold. Phys. Rev. B 33, 904–908 (1986)

    Article  Google Scholar 

  39. 39.

    C. Pecharromán, J.S. Moya, Experimental evidence of a giant capacitance in insulator-conductor composites at the percolation threshold. Adv. Mater. 12, 294–297 (2000)

    Article  Google Scholar 

  40. 40.

    Rajwali Khan Zulfiqar, Yuliang Yuan et al., Variation of structural, optical, dielectric and magnetic properties of SnO2 nanoparticles. J Mater Sci. 28, 4625–4636 (2016)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tahirzeb Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Zulfiqar, Khan, T. et al. Investigation of structural, optical, electrochemical and dielectric properties of SnO2/GO nanocomposite. J Mater Sci: Mater Electron 30, 10202–10210 (2019). https://doi.org/10.1007/s10854-019-01356-3

Download citation