Skip to main content
Log in

Humidity and selective oxygen detection by Ag2S nanoparticles gas sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report selective oxygen detection by Ag2S nanoparticles gas and humidity sensor at low temperatures with high sensitivity. The Ag2S nanoparticles with preferentially oriented plane (−112) and texture coefficient ~ 1.49 were synthesized by co-precipitation technique. The bandgap and surface area of Ag2S nanoparticles was 2.03 eV and 16.30 m2/g respectively. The response of Ag2S nanoparticles to detect different concentrations of oxygen, LPG, methanol, ethanol and 1-butanol at different temperatures (24–160 °C) was investigated. The Ag2S nanoparticles exhibited a linear relationship between response versus concentration at different temperatures for the tested gases. However, the Ag2S nanoparticles exhibited high response, shortest response/recovery time, good stability and recyclability to oxygen as compared to other tested gases at 160 °C. At room temperature the response of the Ag2S nanoparticles relative humidity (RH) sensor increased linearly with increase in RH. Ag2S nanoparticles as RH sensors also exhibited high response, short response/recovery time, good stability and recyclability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.H. Bari, S.B. Patil, A.R. Bari, Int. Nano Lett. 3, 12 (2013)

    Article  Google Scholar 

  2. N. Barsan, D. Koziej, U. Weimar, Sens. Actuators B Chem. 121, 18 (2007)

    Article  Google Scholar 

  3. Z. Chen, C. Lu, Sens. Lett. 3, 274 (2005)

    Article  Google Scholar 

  4. G. Eranna, B. Joshi, D. Runthala, R. Gupta, Crit. Rev. Solid State Mater. Sci. 29, 111 (2004)

    Article  Google Scholar 

  5. Y.-C. Liang, S.-L. Liu, Nanoscale Res. Lett. 9, 647 (2014)

    Article  Google Scholar 

  6. M. Afsar, M. Rafiq, A. Tok, RSC Adv. 7, 21556 (2017)

    Article  Google Scholar 

  7. K. Aguir, C. Lemire, D. Lollman, Sens. Actuators B Chem. 84, 1 (2002)

    Article  Google Scholar 

  8. V. Guidi, B. Fabbri, A. Gaiardo et al., Procedia Eng. 120, 138 (2015)

    Article  Google Scholar 

  9. A.A. Sagade, R. Sharma, Sens. Actuators B Chem. 133, 135 (2008)

    Article  Google Scholar 

  10. F. Siddique, M. Rafiq, M. Afsar, M. Hasan, M. Chaudhry, J. Mater. Sci. Mater. Electron. 29, 19180 (2018)

    Article  Google Scholar 

  11. A. Jamil, M. Afsar, F. Sher, M. Rafiq, Phys. B 509, 76 (2017)

    Article  Google Scholar 

  12. M.F. Afsar, A. Jamil, M.A. Rafiq, Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 045010 (2017)

    Article  Google Scholar 

  13. M.F. Afsar, M.A. Rafiq, F. Siddique, F. Saira, M.M. Chaudhry, A.I.Y. Tok, Mater. Res. Express 5, 056206 (2018)

    Article  Google Scholar 

  14. M. Ahmad, M. Rafiq, M. Hasan, J. Appl. Phys. 114, 133702 (2013)

    Article  Google Scholar 

  15. M. Ahmad, M. Rafiq, Z. Imran et al., J. Appl. Phys. 114, 043710 (2013)

    Article  Google Scholar 

  16. M. Ahmad, M. Rafiq, K. Rasool, Z. Imran, M. Hasan, J. Appl. Phys. 113, 043704 (2013)

    Article  Google Scholar 

  17. H. Shen, X. Jiao, D. Oron, J. Li, H. Lin, J. Power Sources 240, 8 (2013)

    Article  Google Scholar 

  18. A.N. Rodríguez, M. Nair, P. Nair, Semicond. Sci. Technol. 20, 576 (2005)

    Article  Google Scholar 

  19. R. Zamiri, H.A. Ahangar, A. Zakaria et al., Chem. Cent. J. 9, 28 (2015)

    Article  Google Scholar 

  20. C. Cui, X. Li, J. Liu, Y. Hou, Y. Zhao, G. Zhong, Nanoscale Res. Lett. 10, 431 (2015)

    Article  Google Scholar 

  21. M.J. Mangalam, K.N. Rao, N. Rangarajan, C. Suryanarayana, J. Phys. D Appl. Phys. 2, 1643 (1969)

    Article  Google Scholar 

  22. J.M. Almeida, C. Lu, C.R. Mendonça, C.B. Arnold, Opt. Mater. Express 5, 1815 (2015)

    Article  Google Scholar 

  23. J. Joo, H.B. Na, T. Yu et al., J. Am. Chem. Soc. 125, 11100 (2003)

    Article  Google Scholar 

  24. D. Qin, L. Zhang, G. He, Q. Zhang, Mater. Res. Bull. 48, 3644 (2013)

    Article  Google Scholar 

  25. R.P. Bagwe, K.C. Khilar, Langmuir 16, 905 (2000)

    Article  Google Scholar 

  26. F. Gao, Q. Lu, D. Zhao, Nano Lett. 3, 85 (2003)

    Article  Google Scholar 

  27. S. Kashida, N. Watanabe, T. Hasegawa, H. Iida, M. Mori, S. Savrasov, Solid State Ion. 158, 167 (2003)

    Article  Google Scholar 

  28. R. Sadanaga, S. Sueno, Mineral. J. 5, 124 (1967)

    Article  Google Scholar 

  29. S-y Miyatani, J. Phys. Soc. Jpn. 10, 786 (1955)

    Article  Google Scholar 

  30. P. Junod, H. Hediger, B. Kilchör, J. Wullschleger, Philos. Mag. 36, 941 (1977)

    Article  Google Scholar 

  31. D. Wang, C. Hao, W. Zheng et al., Adv. Mater. 20, 2628 (2008)

    Article  Google Scholar 

  32. T. Zhang, Y. He, R. Wang et al., Sens. Actuators B Chem. 131, 687 (2008)

    Article  Google Scholar 

  33. M. Morales-Masis, S. Van der Molen, T. Hasegawa, J. van Ruitenbeek, Phys. Rev. B 84, 115310 (2011)

    Article  Google Scholar 

  34. E. Arthur, C.D. Doris, Int. J. Appl. Phys. Math. 4, 263 (2014)

    Article  Google Scholar 

  35. E.O. Timmermann, Colloids Surf. A 220, 235 (2003)

    Article  Google Scholar 

  36. H. Yan, P. Song, S. Zhang, Z. Yang, Q. Wang, RSC Adv. 5, 79593 (2015)

    Article  Google Scholar 

  37. N.M. Vuong, H. Jung, D. Kim, H. Kim, S.-K. Hong, J. Mater. Chem. 22, 6716 (2012)

    Article  Google Scholar 

  38. T. Wolkenstein, Electronic Processes on Semiconductor Surfaces During Chemisorption (Springer, Belin, 2012)

    Google Scholar 

  39. S. Sadovnikov, A. Gusev, A. Rempel, Rev. Adv. Mater. Sci. 41, 7–19 (2015)

    Google Scholar 

  40. A. Dey, Mater. Sci. Eng. B 229, 206 (2018)

    Article  Google Scholar 

  41. F.A. Sabah, N.M. Ahmed, Z. Hassan, H.S. Rasheed, Sens. Actuators A 249, 68 (2016)

    Article  Google Scholar 

  42. N. Izu, N. Oh-hori, M. Itou, W. Shin, I. Matsubara, N. Murayama, Sens. Actuators B Chem. 108, 238 (2005)

    Article  Google Scholar 

  43. N. Izu, N. Oh-hori, W. Shin, I. Matsubara, N. Murayama, M. Itou, Sens. Actuators B Chem. 130, 105 (2008)

    Article  Google Scholar 

  44. J.C. Belmonte, J. Manzano, J. Arbiol et al., Sens. Actuators B Chem. 114, 881 (2006)

    Article  Google Scholar 

  45. Y. Hu, O. Tan, W. Cao, W. Zhu, Ceram. Int. 30, 1819 (2004)

    Article  Google Scholar 

  46. N. Izu, W. Shin, N. Murayama, Sens. Actuators B Chem. 93, 449 (2003)

    Article  Google Scholar 

  47. H. Karami, S. Babaei, Int. J. Electrochem. Sci. 8, 12078 (2013)

    Google Scholar 

  48. N. Banerjee, S. Roy, C.K. Sarkar, P. Bhattacharyya, IEEE Sens. J. 13, 1669 (2013)

    Article  Google Scholar 

  49. N. Barsan, U. Weimar, J. Electroceram. 7, 143 (2001)

    Article  Google Scholar 

  50. C.-O. Park, S. Akbar, J. Mater. Sci. 38, 4611 (2003)

    Article  Google Scholar 

  51. P. Jiang, J. Jie, Y. Yu et al., J. Mater. Chem. 22, 6856 (2012)

    Article  Google Scholar 

  52. G. Dubourg, A. Segkos, J. Katona et al., Sensors 17, 1854 (2017)

    Article  Google Scholar 

  53. M.F. Afsar, M. Rafiq, A. Jamil et al., ACS Omega 4, 2030 (2019)

    Article  Google Scholar 

  54. L. Wang, Y. He, J. Hu, Q. Qi, T. Zhang, Sens. Actuators B Chem. 153, 460 (2011)

    Article  Google Scholar 

  55. Z. Wang, L. Shi, F. Wu, S. Yuan, Y. Zhao, M. Zhang, Nanotechnology 22, 275502 (2011)

    Article  Google Scholar 

  56. Q. Qi, T. Zhang, Q. Yu et al., Sens. Actuators B Chem. 133, 638 (2008)

    Article  Google Scholar 

  57. J. Jie, W. Zhang, K. Peng, G. Yuan, C.S. Lee, S.T. Lee, Adv. Funct. Mater. 18, 3251 (2008)

    Article  Google Scholar 

  58. R. Nahar, Sens. Actuators B Chem. 63, 49 (2000)

    Article  Google Scholar 

  59. J. Feng, L. Peng, C. Wu et al., Adv. Mater. 24, 1969 (2012)

    Article  Google Scholar 

  60. S.-L. Zhang, H.-H. Choi, H.-Y. Yue, W.-C. Yang, Curr. Appl. Phys. 14, 264 (2014)

    Article  Google Scholar 

  61. Y. Tan, K. Yu, T. Yang et al., J. Mater. Chem. C 2, 5422 (2014)

    Article  Google Scholar 

  62. G. Kunakova, R. Meija, I. Bite et al., Phys. Scr. 90, 094017 (2015)

    Article  Google Scholar 

  63. A.S. Pawbake, R.G. Waykar, D.J. Late, S.R. Jadkar, ACS Appl. Mater. Interfaces. 8, 3359 (2016)

    Article  Google Scholar 

  64. R.K. Jha, P.K. Guha, Nanotechnology 27, 475503 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

M. F. Afsar would like to admit the HEC (Higher Education Commission of Pakistan) for the financial support through IRSIP (International Research Initiative Program). Authors are grateful to Dr. Tay Yee Yan for his help in TEM analysis (Nanyang Technological University Singapore). M. A. Rafiq would like to acknowledge the financial support from HEC under NRPU (National Research Program for Universities) Project No 3662. Funding was provided by CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Rafiq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afsar, M.F., Rafiq, M.A., Tok, A.I.Y. et al. Humidity and selective oxygen detection by Ag2S nanoparticles gas sensor. J Mater Sci: Mater Electron 30, 10117–10127 (2019). https://doi.org/10.1007/s10854-019-01347-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01347-4

Navigation