Skip to main content

Structural, optical, and electrical evolution of sol–gel-immersion grown nickel oxide nanosheet array films on aluminium doping

Abstract

We developed aluminium (Al)-doped nickel oxide (NiO) nanosheet arrays film on the indium-doped tin oxide (ITO) substrate via sol–gel immersion method using nickel nitrate hexahydrate and aluminium nitrate nonahydrate as precursor and dopant materials, respectively. The Al-doping concentrations were varied from 0 to 2 at.%. Uniform Al-doped NiO nanosheet array films were observed on the substrate; the denser and smaller size of the NiO nanosheets were obtained at higher Al-doping concentrations. The growth mechanism was proposed. The crystallinity of Al-doped NiO nanosheet deteriorated at higher doping concentration. Meanwhile, the crystallite size, lattice parameter, and interplanar spacing were reduced with the doping quantity. The compressive strain, tensile stress, dislocation density, and band gap of the Al-doped NiO upsurged at higher doping concentration. The current–voltage measurement results revealed that the resistivity increased after the doping process up to 2 at.%. The Raman spectra showed that the doped samples exhibit blue-shift and decreased intensity of the Raman peaks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    H. Kheel, G.-J. Sun, J.K. Lee, A. Mirzaei, S. Choi, C. Lee, Hydrogen gas detection of Nb2O5 nanoparticle-decorated CuO nanorod sensors. Met. Mater. Int. 23, 214–219 (2017)

    Article  Google Scholar 

  2. 2.

    S. Karunamoorthy, M. Velluchamy, Design and synthesis of bandgap tailored porous Ag/NiO nanocomposite: an effective visible light active photocatalyst for degradation of organic pollutants. J. Mater. Sci.: Mater. Electron. 29, 20367–20382 (2018)

    Google Scholar 

  3. 3.

    A.S. Ismail, M.H. Mamat, I.B. Shameem Banu, M.F. Malek, M.M. Yusoff, R. Mohamed, W.R.W. Ahmad, M.A.R. Abdullah, A.B. Suriani, M.K. Ahmad, M. Rusop, Modulation of Sn concentration in ZnO nanorod array: intensification on the conductivity and humidity sensing properties. J Mater Sci: Mater Electron 29, 12076–12088 (2018)

    Google Scholar 

  4. 4.

    Z. Li, L. Wei, Y. Liu, Y. Su, X. Dong, Y. Zhang, Facile synthesis of single-crystalline mesoporous NiO nanosheets as high-performance anode materials for Li-ion batteries. J. Mater. Sci.: Mater. Electron. 28, 13853–13860 (2017)

    Google Scholar 

  5. 5.

    S. Weber, T. Rath, J. Mangalam, B. Kunert, A.M. Coclite, M. Bauch, T. Dimopoulos, G. Trimmel, Investigation of NiOx-hole transport layers in triple cation perovskite solar cells. J. Mater. Sci.: Mater. Electron. 29, 1847–1855 (2018)

    Google Scholar 

  6. 6.

    M.H. Mamat, N.N. Hafizah, M. Rusop, Fabrication of thin, dense and small-diameter zinc oxide nanorod array-based ultraviolet photoconductive sensors with high sensitivity by catalyst-free radio frequency magnetron sputtering. Mater. Lett. 93, 215–218 (2013)

    Article  Google Scholar 

  7. 7.

    S. Hussain, P. Wan, N. Aslam, G. Qiao, G. Liu, M. Wang, Ag-doped NiO porous network structure on Ni foam as electrode for supercapacitors. J. Mater. Sci.: Mater. Electron. 29, 1759–1765 (2018)

    Google Scholar 

  8. 8.

    T. Geng, X. Zhou, H. Wu, Facile hydrothermal synthesis NiHPO3·H2O nanorods, influencing factors, and transformation toward Ni–NiO composite nanostructures, catalytic properties and application in sensing for glucose. J. Mater. Sci.: Mater. Electron. 27, 8416–8427 (2016)

    Google Scholar 

  9. 9.

    M. Ranjbar, M.A. Taher, A. Sam, NiO nanostructures: novel solvent-less solid-state synthesis, characterization and MB photocatalytic degradation. J. Mater. Sci.: Mater. Electron. 26, 8029–8034 (2015)

    Google Scholar 

  10. 10.

    J. Li, J. Ma, S. Chen, J. He, Y. Huang, Characterization of calcium alginate/deacetylated konjac glucomannan blend films prepared by Ca2+ crosslinking and deacetylation. Food Hydrocoll. 82, 363–369 (2018)

    Article  Google Scholar 

  11. 11.

    M. Cai, J. Zhu, C. Yang, R. Gao, C. Shi, J. Zhao, A parallel bicomponent TPU/PI membrane with mechanical strength enhanced isotropic interfaces used as polymer electrolyte for lithium-ion battery. Polymers 11, 185 (2019)

    Article  Google Scholar 

  12. 12.

    M. Ma, Y. Yang, W. Li, R. Feng, Z. Li, P. Lyu, Y. Ma, Gold nanoparticles supported by amino groups on the surface of magnetite microspheres for the catalytic reduction of 4-nitrophenol. J. Mater. Sci. 54, 323–334 (2019)

    Article  Google Scholar 

  13. 13.

    G. Wu, H. Zhang, X. Luo, L. Yang, H. Lv, Investigation and optimization of Fe/ZnFe2O4 as a Wide-band electromagnetic absorber. J. Colloid Interface Sci. 536, 548–555 (2019)

    Article  Google Scholar 

  14. 14.

    G. Wu, Z. Jia, Y. Cheng, H. Zhang, X. Zhou, H. Wu, Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries. Appl. Surf. Sci. 464, 472–478 (2019)

    Article  Google Scholar 

  15. 15.

    S. Liu, W. Zeng, T. Chen, Synthesis of hierarchical flower-like NiO and the influence of surfactant. Physica E 85, 13–18 (2017)

    Article  Google Scholar 

  16. 16.

    S. Xi, Y. Zhu, Y. Yang, S. Jiang, Z. Tang, Facile synthesis of free-standing NiO/MnO2 core-shell nanoflakes on carbon cloth for flexible supercapacitors. Nanoscale Res. Lett. 12, 171 (2017)

    Article  Google Scholar 

  17. 17.

    H. Ren, C. Gu, S.W. Joo, J. Zhao, Y. Sun, J. Huang, Effective hydrogen gas sensor based on NiO@rGO nanocomposite. Sens. Actuator B 266, 506–513 (2018)

    Article  Google Scholar 

  18. 18.

    Y. Zhao, J. Yan, Y. Huang, J. Lian, J. Qiu, J. Bao, M. Cheng, H. Xu, H. Li, K. Chen, Interfacial self-assembly of monolayer Mg-doped NiO honeycomb structured thin film with enhanced performance for gas sensing. J. Mater. Sci.: Mater. Electron. 29, 11498–11508 (2018)

    Google Scholar 

  19. 19.

    R. Lontio Fomekong, H.M. Tedjieukeng Kamta, J. Ngolui Lambi, D. Lahem, P. Eloy, M. Debliquy, A. Delcorte, A sub-ppm level formaldehyde gas sensor based on Zn-doped NiO prepared by a co-precipitation route. J. Alloy Compd. 731, 1188–1196 (2018)

    Article  Google Scholar 

  20. 20.

    M. Ben Amor, A. Boukhachem, A. Labidi, K. Boubaker, M. Amlouk, Physical investigations on Cd doped NiO thin films along with ethanol sensing at relatively low temperature. J. Alloy Compd. 693, 490–499 (2017)

    Article  Google Scholar 

  21. 21.

    C. Wang, X. Cui, J. Liu, X. Zhou, X. Cheng, P. Sun, X. Hu, X. Li, J. Zheng, G. Lu, Design of superior ethanol gas sensor based on Al-doped NiO nanorod-flowers. ACS Sens. 1, 131–136 (2016)

    Article  Google Scholar 

  22. 22.

    M. Predanocy, I. Hotový, M. Čaplovičová, Structural, optical and electrical properties of sputtered NiO thin films for gas detection. Appl. Surf. Sci. 395, 208–213 (2017)

    Article  Google Scholar 

  23. 23.

    S. Koussi-Daoud, O. Majerus, D. Schaming, T. Pauporté, Electrodeposition of NiO films and inverse opal organized layers from polar aprotic solvent-based electrolyte. Electrochim. Acta 219, 638–646 (2016)

    Article  Google Scholar 

  24. 24.

    A.A. Akl, S.A. Mahmoud, Effect of growth temperatures on the surface morphology, optical analysis, dielectric constants, electric susceptibility, Urbach and bandgap energy of sprayed NiO thin films. Optik 172, 783–793 (2018)

    Article  Google Scholar 

  25. 25.

    N. Pal, S. Banerjee, A. Bhaumik, A facile route for the syntheses of Ni(OH)2 and NiO nanostructures as potential candidates for non-enzymatic glucose sensor. J. Colloid Interface Sci. 516, 121–127 (2018)

    Article  Google Scholar 

  26. 26.

    S. Wang, D. Huang, S. Xu, W. Jiang, T. Wang, J. Hu, N. Hu, Y. Su, Y. Zhang, Z. Yang, Two-dimensional NiO nanosheets with enhanced room temperature NO2 sensing performance via Al doping. Phys. Chem. Chem. Phys. 19, 19043–19049 (2017)

    Article  Google Scholar 

  27. 27.

    Q. Zhou, A. Umar, E.M. Sodki, A. Amine, L. Xu, Y. Gui, A.A. Ibrahim, R. Kumar, S. Baskoutas, Fabrication and characterization of highly sensitive and selective sensors based on porous NiO nanodisks. Sens. Actuator B 259, 604–615 (2018)

    Article  Google Scholar 

  28. 28.

    S.K. Meher, P. Justin, G. Rao, Nanoscale morphology dependent pseudocapacitance of NiO: influence of intercalating anions during synthesis. Nanoscale 3, 683–692 (2011)

    Article  Google Scholar 

  29. 29.

    N.D. Hoa, P. Van Tong, C.M. Hung, N. Van Duy, N. Van Hieu, Urea mediated synthesis of Ni(OH)2 nanowires and their conversion into NiO nanostructure for hydrogen gas-sensing application. Int. J. Hydrogen Energy 43, 9446–9453 (2018)

    Article  Google Scholar 

  30. 30.

    C. Mallika, A.M. Edwin Suresh Raj, K.S. Nagaraja, O.M. Sreedharan, Use of SnO for the determination of standard Gibbs energy of formation of SnO2 by oxide electrolyte measurements. Thermochim. Acta. 371, 95–101 (2001)

    Article  Google Scholar 

  31. 31.

    M. Masoumi, D.M. Cupid, T.L. Reichmann, K. Chang, D. Music, J.M. Schneider, H.J. Seifert, Enthalpies of formation of layered LiNixMnxCo1−2xO2 (0 ≤ x ≤ 0.5) compounds as lithium ion battery cathode materials. Int. J. Mater. Res. 108, 869–878 (2017)

    Google Scholar 

  32. 32.

    S. Phapale, R. Mishra, D. Das, Standard enthalpy of formation and heat capacity of compounds in the pseudo-binary Bi2O3–Fe2O3 system. J. Nucl. Mater. 373, 137–141 (2008)

    Article  Google Scholar 

  33. 33.

    S.-Y. Kuo, W.-C. Chen, F.-I. Lai, C.-P. Cheng, H.-C. Kuo, S.-C. Wang, W.-F. Hsieh, Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films. J. Cryst. Growth 287, 78–84 (2006)

    Article  Google Scholar 

  34. 34.

    Z. Wu, Z. Zou, J. Huang, F. Gao, Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting. J. Catal. 358, 243–252 (2018)

    Article  Google Scholar 

  35. 35.

    S. Kerli, U. Alver, H. Yaykaşlı, Investigation of the properties of In doped NiO films. Appl. Surf. Sci. 318, 164–167 (2014)

    Article  Google Scholar 

  36. 36.

    C. Wang, J. Liu, Q. Yang, P. Sun, Y. Gao, F. Liu, J. Zheng, G. Lu, Ultrasensitive and low detection limit of acetone gas sensor based on W-doped NiO hierarchical nanostructure. Sens. Actuator B 220, 59–67 (2015)

    Article  Google Scholar 

  37. 37.

    H. Gao, Q. Yu, S. Zhang, T. Wang, P. Sun, H. Lu, F. Liu, X. Yan, F. Liu, X. Liang, Y. Gao, G. Lu, Nanosheet-assembled NiO microspheres modified by Sn2+ ions isovalent interstitial doping for xylene gas sensors. Sens. Actuator B 269, 210–222 (2018)

    Article  Google Scholar 

  38. 38.

    C. Feng, Z. Jiang, B. Chen, P. Cheng, Y. Wang, C. Huang, Aluminum-doped NiO nanofibers as chemical sensors for selective and sensitive methanol detection. Anal. Methods 11, 575–581 (2019)

    Article  Google Scholar 

  39. 39.

    F. Lin, D. Nordlund, T.-C. Weng, R.G. Moore, D.T. Gillaspie, A.C. Dillon, R.M. Richards, C. Engtrakul, Hole doping in Al-containing nickel oxide materials to improve electrochromic performance. ACS Appl. Mater. Interfaces 5, 301–309 (2013)

    Article  Google Scholar 

  40. 40.

    H. Gao, Q. Yu, S. Zhang, T. Wang, P. Sun, H. Lu, F. Liu, X. Yan, F. Liu, X. Liang, Y. Gao, G. Lu, Nanosheet-assembled NiO microspheres modified by Sn2+ ions isovalent interstitial doping for xylene gas sensors. Sens. Actuator B 269, 210–222 (2018)

    Article  Google Scholar 

  41. 41.

    M.H. Mamat, M.Z. Sahdan, Z. Khusaimi, A.Z. Ahmed, S. Abdullah, M. Rusop, Influence of doping concentrations on the aluminum doped zinc oxide thin films properties for ultraviolet photoconductive sensor applications. Opt. Mater. 32, 696–699 (2010)

    Article  Google Scholar 

  42. 42.

    K.N. Patel, M.P. Deshpande, K. Chauhan, P. Rajput, V.P. Gujarati, S. Pandya, V. Sathe, S.H. Chaki, Effect of Mn doping concentration on structural, vibrational and magnetic properties of NiO nanoparticles. Adv. Powder Technol. 29, 2394–2403 (2018)

    Article  Google Scholar 

  43. 43.

    K.N. Patel, M.P. Deshpande, V.P. Gujarati, S. Pandya, V. Sathe, S.H. Chaki, Structural and optical analysis of Fe doped NiO nanoparticles synthesized by chemical precipitation route. Mat. Res. Bull. 106, 187–196 (2018)

    Article  Google Scholar 

  44. 44.

    M.A. Rahman, R. Radhakrishnan, R. Gopalakrishnan, Structural, optical, magnetic and antibacterial properties of Nd doped NiO nanoparticles prepared by co-precipitation method. J. Alloy Compd. 742, 421–429 (2018)

    Article  Google Scholar 

  45. 45.

    A. Mallikarjuna Reddy, A. Sivasankar Reddy, P. Sreedhara Reddy, Thickness dependent properties of nickel oxide thin films deposited by dc reactive magnetron sputtering. Vacuum 85, 949–954 (2011)

    Article  Google Scholar 

  46. 46.

    S. Dewan, M. Tomar, R.P. Tandon, V. Gupta, Zn doping induced conductivity transformation in NiO films for realization of p-n homo junction diode. J. Appl. Phys. 121, 215307 (2017)

    Article  Google Scholar 

  47. 47.

    S.R. Gawali, V.L. Patil, V.G. Deonikar, S.S. Patil, D.R. Patil, P.S. Patil, J. Pant, Ce doped NiO nanoparticles as selective NO2 gas sensor. J. Phys. Chem. Solids 114, 28–35 (2018)

    Article  Google Scholar 

  48. 48.

    C. Mrabet, M.B. Amor, A. Boukhachem, M. Amlouk, T. Manoubi, Physical properties of La-doped NiO sprayed thin films for optoelectronic and sensor applications. Ceram. Int. 42, 5963–5978 (2016)

    Article  Google Scholar 

  49. 49.

    Y. Akaltun, T. Çayır, Fabrication and characterization of NiO thin films prepared by SILAR method. J. Alloy Compd. 625, 144–148 (2015)

    Article  Google Scholar 

  50. 50.

    L. Umaralikhan, M.J.M. Jaffar, X-ray broadening and optical properties of NiO nanoparticles prepared via co-precipitation method by varying temperature. Iran. J. Sci. Technol. Trans. A Sci. 42, 2345–2348 (2018)

    Article  Google Scholar 

  51. 51.

    C.J. Flynn, S.M. McCullough, E. Oh, L. Li, C.C. Mercado, B.H. Farnum, W. Li, C.L. Donley, W. You, A.J. Nozik, J.R. McBride, T.J. Meyer, Y. Kanai, J.F. Cahoon, Site-selective passivation of defects in NiO solar photocathodes by targeted atomic deposition. ACS Appl. Mater. Interfaces 8, 4754–4761 (2016)

    Article  Google Scholar 

  52. 52.

    A. Yazdani, H. Zafarkish, K. Rahimi, The variation of Eg-shape dependence of NiO nanoparticles by the variation of annealing temperature. Mater. Sci. Semicond. Process. 74, 225–231 (2018)

    Article  Google Scholar 

  53. 53.

    M.F. Malek, M.H. Mamat, Z. Khusaimi, M.Z. Sahdan, M.Z. Musa, A.R. Zainun, A.B. Suriani, N.M. Sin, S.A. Hamid, M. Rusop, Sonicated sol–gel preparation of nanoparticulate ZnO thin films with various deposition speeds: the highly preferred c-axis (002) orientation enhances the final properties. J. Alloy. Compd. 582, 12–21 (2014)

    Article  Google Scholar 

  54. 54.

    M.F. Malek, M.H. Mamat, M.Z. Musa, T. Soga, S.A. Rahman, S.A.H. Alrokayan, H.A. Khan, M. Rusop, Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process. J. Lumin. 160, 165–175 (2015)

    Article  Google Scholar 

  55. 55.

    C. Wang, J. Liu, Q. Yang, P. Sun, Y. Gao, F. Liu, J. Zheng, G. Lu, Ultrasensitive and low detection limit of acetone gas sensor based on W-doped NiO hierarchical nanostructure. Sens. Actuator B 220, 59–67 (2015)

    Article  Google Scholar 

  56. 56.

    P. Bose, S. Ghosh, S. Basak, M.K. Naskar, A facile synthesis of mesoporous NiO nanosheets and their application in CO oxidation. J. Asian Ceram. Soc. 4, 1–5 (2016)

    Article  Google Scholar 

  57. 57.

    Z. Wang, H. Zhou, D. Han, F. Gu, Electron compensation in p-type 3DOM NiO by Sn doping for enhanced formaldehyde sensing performance. J. Mater. Chem. C 5, 3254–3263 (2017)

    Article  Google Scholar 

  58. 58.

    P. Ravikumar, B. Kisan, A. Perumal, Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles. AIP Adv. 5, 087116 (2015)

    Article  Google Scholar 

  59. 59.

    S. Liu, J. Jia, J. Wang, S. Liu, X. Wang, H. Song, X. Hu, Synthesis of Fe-doped NiO nanofibers using electrospinning method and their ferromagnetic properties. J. Magn. Magn. Mater. 324, 2070–2074 (2012)

    Article  Google Scholar 

  60. 60.

    Y. Ji-Wook, K. Hyo-Joong, K. Il-Doo, L. Jong-Heun, Electronic sensitization of the response to C2H5OH of p-type NiO nanofibers by Fe doping. Nanotechnology 24, 444005 (2013)

    Article  Google Scholar 

  61. 61.

    L. Xiu, T. Jian-Feng, E.H. Yan, H. Xin-Tang, Microwave-assisted synthesis of Fe-doped NiO nanofoams assembled by porous nanosheets for fast response and recovery gas sensors. Mater. Res. Exp. 4, 045015 (2017)

    Article  Google Scholar 

  62. 62.

    D.Y. Jiang, J.M. Qin, X. Wang, S. Gao, Q.C. Liang, J.X. Zhao, Optical properties of NiO thin films fabricated by electron beam evaporation. Vacuum 86, 1083–1086 (2012)

    Article  Google Scholar 

  63. 63.

    C.A. Melendres, S. Xu, In situ laser Raman spectroscopic study of anodic corrosion films on nickel and cobalt. J. Electrochem. Soc. 131, 2239–2243 (1984)

    Article  Google Scholar 

  64. 64.

    D.A. Wruck, M. Rubin, Structure and electronic properties of electrochromic NiO films. J. Electrochem. Soc. 140, 1097–1104 (1993)

    Article  Google Scholar 

  65. 65.

    S.H. Lee, H.M. Cheong, N.G. Park, C.E. Tracy, A. Mascarenhas, D.K. Benson, S.K. Deb, Raman spectroscopic studies of Ni-W oxide thin films. Solid State Ion. 140, 135–139 (2001)

    Article  Google Scholar 

Download references

Acknowledgement

The author (M.H. Mamat) would like to thank DST of Indian Government for the ASEAN-India Research & Training Fellowship Scheme (IMRC/AISTDF/R&D/P-1/2017). The conducted research was funded by Fundemental Research Grant Scheme (FRGS) (File No: FRGS/1/2018/TK04/UITM/02/23). The authors acknowledge the supports received from the Faculty of Electrical Engineering of UiTM and Institute of Research Management and Innovation (IRMI).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. H. Mamat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mamat, M.H., Parimon, N., Ismail, A.S. et al. Structural, optical, and electrical evolution of sol–gel-immersion grown nickel oxide nanosheet array films on aluminium doping. J Mater Sci: Mater Electron 30, 9916–9930 (2019). https://doi.org/10.1007/s10854-019-01330-z

Download citation