Advertisement

Double-perovskite Ca2AlNbO6: Mn4+ red phosphor for white light emitting diodes: synthesis, structure and luminescence properties

  • Kuankuan Luo
  • Yan ZhangEmail author
  • Jiayue Xu
  • Junping Yuan
  • Liwu Huang
  • Di Xiang
Article
  • 59 Downloads

Abstract

The red-emitting phosphors Ca2AlNbO6: xmol%Mn4+ (CAN: xmol%Mn4+) (0.1 ≤ x ≤ 0.9) were successfully synthesized via a conventional high temperature solid-state method at air atmosphere. A band was located at 320 nm in diffuse reflection spectra (DRS) because of the spin-allowed 4A2g → 4T1g transition of Mn4+. Moreover, there were two broad bands located at photoluminescence excitation (PLE) spectra due to the spin-allowed transitions of Mn4+ upon the excitation of 712 nm. And the phosphors exhibited the far-red emission bands centered at ~ 712 nm on account of the spin-forbidden 2Eg → 4A2g transition of Mn4+ under the excitation of 355 nm. And the optimum one was CAN: 0.3 mol%Mn4+ which yields the brightest red light due to the concentration quenching effect. Furthermore, it could be confirmed that the existence of nonradiative among Mn4+ ions because the lifetime of the phosphors was decreased as the concentration of Mn4+ in CAN increased from 0.1% to 0.9 mol%. The average lifetime of the phosphors was in the range of miscroscend. In addition, the CIE chromaticity coordinates of CAN: 0.3 mol%Mn4+ were (0.7319, y = 0.2618). Finally, a blue LED chip combined with YAG: Ce3+ yellow and CAN: 0.3 mol% Mn4+ red phosphors to fabricate a warm white light emitting-diode (WLED). And the CIE chromaticity coordinates, color rendering index (CRI) and the corrected color temperature (CCT) of the device were (0.3799, 0.3432), 74.2 and 3727 K, respectively.

Notes

Acknowledgements

This work was supported by Foundation of Shanghai Institute of Technology (XTCX2018-6), Shanghai Municipal Education Commission (14YZ145), Natural Science Foundation of Shanghai (16ZR1435900), National Science Foundation for Young Scientists of China (61605116), and National Natural Science Foundation of China (51572175).

References

  1. 1.
    Z.G. Xia, Q.L. Liu, Progr. Mater. Sci. 84, 59–117 (2016)CrossRefGoogle Scholar
  2. 2.
    M.H. Du, J. Mater. Chem. C 2, 2475–2481 (2014)CrossRefGoogle Scholar
  3. 3.
    H. Nguyen, R.S. Liu, J. Mater. Chem. C 4, 10759–10775 (2016)CrossRefGoogle Scholar
  4. 4.
    Y.D. Li, S. Qi, P.L. Li, Z.J. Wang, RSC Adv. 7, 38318–38334 (2017)CrossRefGoogle Scholar
  5. 5.
    P. Pust, V. Weiler, C. Hecht, A. Tücks, A.S. Wochnik, A.K. Henß, D. Wiechert, C. Scheu, P.J. Schmidt, W. Schnick, Nat. Mater. 13, 891–896 (2014)CrossRefGoogle Scholar
  6. 6.
    K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, H. Yamamoto, Electrochem. Solid State Lett. 9, 22–25 (2006)CrossRefGoogle Scholar
  7. 7.
    Y.Q. Li, J.E.J. Steen, J.W.H. Krevel, G. Botty, A.C.A. Delsing, F.J. DiSalvo, G.D. With, H.T. Hintzen, J. Alloys Compd. 417, 273–279 (2006)CrossRefGoogle Scholar
  8. 8.
    T. Nakano, Y. Kawakami, K. Uematsu, T. Ishigaki, K. Toda, M. Sato, J. Lumin. 129, 1654–1657 (2009)CrossRefGoogle Scholar
  9. 9.
    Y.K. Xu, S. Adachi, J. Electrochem. Soc. 158, 58–65 (2011)CrossRefGoogle Scholar
  10. 10.
    Y.W. Zhu, L.Y. Cao, M.G. Brik, X.J. Zhang, L. Huang, T.T. Xuan, J. Wang, J. Mater. Chem. C 5, 6420–6426 (2017)CrossRefGoogle Scholar
  11. 11.
    M.M. Zhu, Y.X. Pan, Y.Q. Huang, H.Z. Lian, J. Lin, J. Mater. Chem. C 6, 491–499 (2018)CrossRefGoogle Scholar
  12. 12.
    Y.W. Zhu, J.B. Yu, Y. Liu, M.G. Brik, L. Huang, T.T. Xuan, J. Wang, RSC Adv. 7, 30588–30593 (2017)CrossRefGoogle Scholar
  13. 13.
    J.Q. Long, C.Y. Ma, Y.Z. Wang, X.Y. Yuan, M.M. Du, R. Ma, Z.C. Wen, J.T. Zhang, Y.G. Cao, Mater. Res. Bull. 85, 234–239 (2017)CrossRefGoogle Scholar
  14. 14.
    C.D. Brandle, V.J. Fratello, J. Mater. Res. 5, 2160–2164 (1990)CrossRefGoogle Scholar
  15. 15.
    T.A. Vanderah, W. Febo, J.Y. Chan, R.S. Roth, J.M. Loezos, L.D. Rotter, R.G. Geyer, D.B. Minor, J. Solid State Chem. 155, 78–85 (2000)CrossRefGoogle Scholar
  16. 16.
    C.C. Zhao, X. Yin, F.Q. Huang, Y. Hang, Phys. B 406, 4608–4611 (2011)CrossRefGoogle Scholar
  17. 17.
    I. Levin, J.Y. Chan, J.E. Maslar, T.A. Vanderah, J. Appl. Phys. 90, 904–914 (2001)CrossRefGoogle Scholar
  18. 18.
    B.H. Toby, J. Appl. Crystallogr. 34, 210–213 (2001)CrossRefGoogle Scholar
  19. 19.
    P.Q. Cai, L. Qin, C.L. Chen, J. Wang, S.L. Bi, S. Kim, Y.L. Huang, J. Seo, Inorg. Chem. 57, 3073–3081 (2018)CrossRefGoogle Scholar
  20. 20.
    B. Li, X.Y. Huang, Ceram. Int. 44, 4915–4923 (2018)CrossRefGoogle Scholar
  21. 21.
    X.L. Wu, Y.H. Jiao, O. Hui, Q. Ren, F. Lin, H.H. Li, J. Alloy. Compd. 730, 521–527 (2018)CrossRefGoogle Scholar
  22. 22.
    X. Ding, G. Zhu, W.Y. Geng, Q. Wang, Y.H. Wang, Inorg. Chem. 55, 154–162 (2016)CrossRefGoogle Scholar
  23. 23.
    H.J. Jeon, Y.S. Kang, AsiaNano 2002, 121–125 (2003)Google Scholar
  24. 24.
    A.P. Jadhav, A. Pawar, C.W. Kim, H.G. Cha, U. Pal, Y.S. Kang, J. Phys. Chem. C 113, 16652–16657 (2009)CrossRefGoogle Scholar
  25. 25.
    T.T. Deng, E.H. Song, Y.Y. Zhou, L.Y. Wang, Q.Y. Zhang, J. Mater. Chem. C. 5, 12422–12429 (2017)CrossRefGoogle Scholar
  26. 26.
    H.M. Zhu, C.C. Lin, W.Q. Luo, S.T. Shu, Z.G. Liu, Y.S. Liu, J.T. Kang, E. Ma, Y.G. Cao, R.S. Liu, X.Y. Chen, Nat. Commun. 5, 4312–4321 (2014)CrossRefGoogle Scholar
  27. 27.
    W. Xu, D.Q. Chen, S. Yuan, Y. Zhou, S.H. Li, Chem. Eng. J. 317, 854–861 (2017)CrossRefGoogle Scholar
  28. 28.
    D.Q. Chen, Y. Zhou, W. Xu, J.S. Zhong, Z.G. Ji, W.D. Xiang, J. Mater. Chem. C 4, 1704–1712 (2016)CrossRefGoogle Scholar
  29. 29.
    D. Dexter, J.H. Schulman, J. Chem. Phys. 22, 1063–1070 (1954)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kuankuan Luo
    • 1
  • Yan Zhang
    • 1
    Email author
  • Jiayue Xu
    • 1
  • Junping Yuan
    • 1
  • Liwu Huang
    • 1
  • Di Xiang
    • 1
  1. 1.School of Materials Science and EngineeringShanghai Institute of TechnologyShanghaiPeople’s Republic of China

Personalised recommendations