Skip to main content
Log in

Double-perovskite Ca2AlNbO6: Mn4+ red phosphor for white light emitting diodes: synthesis, structure and luminescence properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The red-emitting phosphors Ca2AlNbO6: xmol%Mn4+ (CAN: xmol%Mn4+) (0.1 ≤ x ≤ 0.9) were successfully synthesized via a conventional high temperature solid-state method at air atmosphere. A band was located at 320 nm in diffuse reflection spectra (DRS) because of the spin-allowed 4A2g → 4T1g transition of Mn4+. Moreover, there were two broad bands located at photoluminescence excitation (PLE) spectra due to the spin-allowed transitions of Mn4+ upon the excitation of 712 nm. And the phosphors exhibited the far-red emission bands centered at ~ 712 nm on account of the spin-forbidden 2Eg → 4A2g transition of Mn4+ under the excitation of 355 nm. And the optimum one was CAN: 0.3 mol%Mn4+ which yields the brightest red light due to the concentration quenching effect. Furthermore, it could be confirmed that the existence of nonradiative among Mn4+ ions because the lifetime of the phosphors was decreased as the concentration of Mn4+ in CAN increased from 0.1% to 0.9 mol%. The average lifetime of the phosphors was in the range of miscroscend. In addition, the CIE chromaticity coordinates of CAN: 0.3 mol%Mn4+ were (0.7319, y = 0.2618). Finally, a blue LED chip combined with YAG: Ce3+ yellow and CAN: 0.3 mol% Mn4+ red phosphors to fabricate a warm white light emitting-diode (WLED). And the CIE chromaticity coordinates, color rendering index (CRI) and the corrected color temperature (CCT) of the device were (0.3799, 0.3432), 74.2 and 3727 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z.G. Xia, Q.L. Liu, Progr. Mater. Sci. 84, 59–117 (2016)

    Article  Google Scholar 

  2. M.H. Du, J. Mater. Chem. C 2, 2475–2481 (2014)

    Article  Google Scholar 

  3. H. Nguyen, R.S. Liu, J. Mater. Chem. C 4, 10759–10775 (2016)

    Article  Google Scholar 

  4. Y.D. Li, S. Qi, P.L. Li, Z.J. Wang, RSC Adv. 7, 38318–38334 (2017)

    Article  Google Scholar 

  5. P. Pust, V. Weiler, C. Hecht, A. Tücks, A.S. Wochnik, A.K. Henß, D. Wiechert, C. Scheu, P.J. Schmidt, W. Schnick, Nat. Mater. 13, 891–896 (2014)

    Article  Google Scholar 

  6. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, H. Yamamoto, Electrochem. Solid State Lett. 9, 22–25 (2006)

    Article  Google Scholar 

  7. Y.Q. Li, J.E.J. Steen, J.W.H. Krevel, G. Botty, A.C.A. Delsing, F.J. DiSalvo, G.D. With, H.T. Hintzen, J. Alloys Compd. 417, 273–279 (2006)

    Article  Google Scholar 

  8. T. Nakano, Y. Kawakami, K. Uematsu, T. Ishigaki, K. Toda, M. Sato, J. Lumin. 129, 1654–1657 (2009)

    Article  Google Scholar 

  9. Y.K. Xu, S. Adachi, J. Electrochem. Soc. 158, 58–65 (2011)

    Article  Google Scholar 

  10. Y.W. Zhu, L.Y. Cao, M.G. Brik, X.J. Zhang, L. Huang, T.T. Xuan, J. Wang, J. Mater. Chem. C 5, 6420–6426 (2017)

    Article  Google Scholar 

  11. M.M. Zhu, Y.X. Pan, Y.Q. Huang, H.Z. Lian, J. Lin, J. Mater. Chem. C 6, 491–499 (2018)

    Article  Google Scholar 

  12. Y.W. Zhu, J.B. Yu, Y. Liu, M.G. Brik, L. Huang, T.T. Xuan, J. Wang, RSC Adv. 7, 30588–30593 (2017)

    Article  Google Scholar 

  13. J.Q. Long, C.Y. Ma, Y.Z. Wang, X.Y. Yuan, M.M. Du, R. Ma, Z.C. Wen, J.T. Zhang, Y.G. Cao, Mater. Res. Bull. 85, 234–239 (2017)

    Article  Google Scholar 

  14. C.D. Brandle, V.J. Fratello, J. Mater. Res. 5, 2160–2164 (1990)

    Article  Google Scholar 

  15. T.A. Vanderah, W. Febo, J.Y. Chan, R.S. Roth, J.M. Loezos, L.D. Rotter, R.G. Geyer, D.B. Minor, J. Solid State Chem. 155, 78–85 (2000)

    Article  Google Scholar 

  16. C.C. Zhao, X. Yin, F.Q. Huang, Y. Hang, Phys. B 406, 4608–4611 (2011)

    Article  Google Scholar 

  17. I. Levin, J.Y. Chan, J.E. Maslar, T.A. Vanderah, J. Appl. Phys. 90, 904–914 (2001)

    Article  Google Scholar 

  18. B.H. Toby, J. Appl. Crystallogr. 34, 210–213 (2001)

    Article  Google Scholar 

  19. P.Q. Cai, L. Qin, C.L. Chen, J. Wang, S.L. Bi, S. Kim, Y.L. Huang, J. Seo, Inorg. Chem. 57, 3073–3081 (2018)

    Article  Google Scholar 

  20. B. Li, X.Y. Huang, Ceram. Int. 44, 4915–4923 (2018)

    Article  Google Scholar 

  21. X.L. Wu, Y.H. Jiao, O. Hui, Q. Ren, F. Lin, H.H. Li, J. Alloy. Compd. 730, 521–527 (2018)

    Article  Google Scholar 

  22. X. Ding, G. Zhu, W.Y. Geng, Q. Wang, Y.H. Wang, Inorg. Chem. 55, 154–162 (2016)

    Article  Google Scholar 

  23. H.J. Jeon, Y.S. Kang, AsiaNano 2002, 121–125 (2003)

    Google Scholar 

  24. A.P. Jadhav, A. Pawar, C.W. Kim, H.G. Cha, U. Pal, Y.S. Kang, J. Phys. Chem. C 113, 16652–16657 (2009)

    Article  Google Scholar 

  25. T.T. Deng, E.H. Song, Y.Y. Zhou, L.Y. Wang, Q.Y. Zhang, J. Mater. Chem. C. 5, 12422–12429 (2017)

    Article  Google Scholar 

  26. H.M. Zhu, C.C. Lin, W.Q. Luo, S.T. Shu, Z.G. Liu, Y.S. Liu, J.T. Kang, E. Ma, Y.G. Cao, R.S. Liu, X.Y. Chen, Nat. Commun. 5, 4312–4321 (2014)

    Article  Google Scholar 

  27. W. Xu, D.Q. Chen, S. Yuan, Y. Zhou, S.H. Li, Chem. Eng. J. 317, 854–861 (2017)

    Article  Google Scholar 

  28. D.Q. Chen, Y. Zhou, W. Xu, J.S. Zhong, Z.G. Ji, W.D. Xiang, J. Mater. Chem. C 4, 1704–1712 (2016)

    Article  Google Scholar 

  29. D. Dexter, J.H. Schulman, J. Chem. Phys. 22, 1063–1070 (1954)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Foundation of Shanghai Institute of Technology (XTCX2018-6), Shanghai Municipal Education Commission (14YZ145), Natural Science Foundation of Shanghai (16ZR1435900), National Science Foundation for Young Scientists of China (61605116), and National Natural Science Foundation of China (51572175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, K., Zhang, Y., Xu, J. et al. Double-perovskite Ca2AlNbO6: Mn4+ red phosphor for white light emitting diodes: synthesis, structure and luminescence properties. J Mater Sci: Mater Electron 30, 9903–9909 (2019). https://doi.org/10.1007/s10854-019-01328-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01328-7

Navigation