Advertisement

Vapor–liquid–solid silicon nanowires growth catalyzed by indium: study of indium oxide effect

  • R. Benabderrahmane ZaghouaniEmail author
  • M. Yaacoubi Tabassi
  • K. Khirouni
  • W. Dimassi
Article
  • 51 Downloads

Abstract

In this work, we report on vapor–liquid–solid growth of silicon nanowires (SiNWs) catalyzed by indium, a low-eutectic post-transition metal. The indium catalyst is synthesized ex situ by annealing indium-coated substrates using two different annealing processes: rapid thermal annealing (RTA) and conventional process. The effect of annealing parameters on indium catalyst properties is studied. We show that after conventional annealing at 600 °C during 45 min, the indium layer is cracked into elongated and inhomogeneous islands of different sizes. X-ray diffraction (XRD) analysis depicts in addition to pure indium planes the presence of new peaks attributed to indium oxide planes formed during annealing. While by using RTA process, oxide-free indium particles were successfully grown in one step by during short time (5 min) at 400 and 450 °C. Quasi-spherical and homogeneously distributed indium particles were obtained at 450 °C. A comparative study between SiNWs catalyzed by indium catalyst prepared following the two different processes was carried out. The indium oxide presence negatively affected the catalytic property of indium, resulting in a lower density of the grown SiNWs. An improvement of the SiNWs density was achieved with RTA-annealed catalyst, as more indium particles were present to act as active catalyst to the growth. The catalyst annealing conditions also affected the size of the SiNWs, with shorter wires with RTA process. However, the shape of the SiNWs was similar in both studied cases, where the wires were bent and kinked. The morphology investigation of the SiNWs also shows that the SiNWs have a core–shell structures consisting of amorphous and crystalline silicon.

Notes

Acknowledgements

This work was supported by the Tunisian Ministry of Higher Education and Scientific Research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    C. Morin, D. Kohen, V. Tileli, P. Faucherand, M. Levis, A. Brioude, B. Salem, T. Baron, S. Perraud, Patterned growth of high aspect ratio silicon wire arrays at moderate temperature. J. Cryst. Growth 321, 151–156 (2011)CrossRefGoogle Scholar
  2. 2.
    T.I. Kamins, R.S. Williams, D.P. Basile, T. Hesjedal, J.S. Harris, Ti-catalyzed Si nanowires by chemical vapor deposition: microscopy and growth mechanisms. J. Appl. Phys. 89, 1008 (2001)CrossRefGoogle Scholar
  3. 3.
    Y. Ke, X. Weng, J.M. Redwing, C.M. Eichfeld, T.R. Swisher, S.E. Mohney, Y.M. Habib, Fabrication and electrical properties of Si nanowires synthesized by Al catalyzed vapor-liquid-solid growth. Nano Lett. 9, 4494 (2009)CrossRefGoogle Scholar
  4. 4.
    J. Arbiol, A.F. Morral, S. Estrade, F. Peiro, B. Kalache, P.R. Cabarrocas, J.R. Morante, Influence of the (111) twinning on the formation of diamond cubic/diamond hexagonal heterostructures in Cu-catalyzed Si nanowires. J. Appl. Phys. 104, 064312 (2008)CrossRefGoogle Scholar
  5. 5.
    S. Conesa-Boj, I. Zardo, S. Estrade, L. Wei, P.J. Alet, P.R. Cabarrocas, J.R. Morante, F. Peiro, A.F. Morral, Defect formation in Ga-catalyzed silicon nanowires. J. Arbiol. Cryst. Growth Des. 10, 1534 (2010)CrossRefGoogle Scholar
  6. 6.
    T. Baron, M. Gordon, F. Dhalluin, C. Ternon, P. Ferret, P. Gentile, Si nanowire growth and characterization using a microelectronics-compatible catalyst:PtSi. Appl. Phys. Lett. 89, 233111 (2006)CrossRefGoogle Scholar
  7. 7.
    R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964)CrossRefGoogle Scholar
  8. 8.
    W.M. Bullis, Properties of gold in silicon. Solid-State Electron. 9, 143 (1966)CrossRefGoogle Scholar
  9. 9.
    M. Abdolirad, R. Khalilzadeh, M. Alijanianzadeh, Growth of silicon nanowires from bio-templated gold nanoparticles. Superlatt. Microstruct. 120, 370 (2018)CrossRefGoogle Scholar
  10. 10.
    N. Ahmed, P.B. Bhargav, A. Rayerfrancis, B. Chandra, P. Ramasamy, Study the effect of plasma power density and gold catalyst thickness on Silicon Nanowires growth by Plasma Enhanced Chemical Vapour Deposition. Mater. Lett. 219, 127 (2018)CrossRefGoogle Scholar
  11. 11.
    M. Legallais, T.T.T. Nguyen, M. Mouis, B. Salem, E. Robin, P. Chenevier, C. Ternon, An innovative large scale integration of silicon nanowire-based field effect transistors. Solid-State Electron. 143, 97 (2018)CrossRefGoogle Scholar
  12. 12.
    B. Le Borgne, L. Pichon, A.C. Salaun, B. Le Bihan, A. Jolivet-Gougeon, S. Martin, R. Roger, O. De Sagazan, Bacteria electrical detection using 3D silicon nanowires based resistor. Sens. Actuators B: Chem. 273, 1794 (2018)CrossRefGoogle Scholar
  13. 13.
    P. Dytrych, V. Drinek, J. Bumba, F. Kastanek, O. Solcova, Silicon nanowires based photoanode for hydrogen evolution. Int. J. Hydrog Energy 43, 18136 (2018)CrossRefGoogle Scholar
  14. 14.
    R.R. Kumar, K.N. Rao, A.R. Phani, Growth of silicon nanowires by electron beam evaporation using indium catalyst. Mater. Lett. 66, 110 (2012)CrossRefGoogle Scholar
  15. 15.
    M.Y. Tabassi, R.B. Zaghouani, M. Khelil, K. Khirouni, W. Dimassi, Study of indium catalyst thickness effect on PECVD-grown silicon nanowires properties. J. Mater. Sci.: Mater. Electron. 28, 9717 (2017)Google Scholar
  16. 16.
    Y. Zhang, H. Ago, J. Liu, M. Yumura, K. Uchida, S. Ohshima, S. Iijima, J. Zhu, X. Zhang, The synthesis of In, In2O3 nanowires and In2O3 nanoparticles with shape-controlled. J. Cryst. Growth 264, 363 (2004)CrossRefGoogle Scholar
  17. 17.
    I. Rodriguez-Sanchez, M.C. Blanco, M.A. Lopez-Quintela, Electrochemical synthesis of silver nanoparticles. J. Phys. Chem. B 104, 9683 (2000)CrossRefGoogle Scholar
  18. 18.
    N.H. Chou, X.L. Ke, P. Schiffer, R.E. Schaak, Room-temperature chemical synthesis of shape-controlled indium nanoparticles. J. Am. Chem. Soc. 130, 8140 (2008)CrossRefGoogle Scholar
  19. 19.
    R.A. Ganeev, A.I. Ryasnyanskiy, U. Chakravarty, P.A. Naik, H. Srivastava, M.K. Tiwari, P.D. Gupta, Structural, optical and nonlinear optical properties of indium nanoparticles prepared by laser ablation. Appl. Phys. B 86, 337 (2007)CrossRefGoogle Scholar
  20. 20.
    X. Xie, X. Zeng, P. Yang, C. Wang, Q. Wang, In-situ formation of indium catalysts to synthesize crystalline silicon nanowires on flexible stainless steel substrates by PECVD. J. Cryst. Growth 347, 7 (2012)CrossRefGoogle Scholar
  21. 21.
    L. Yu, B. O’Donnel, P.J. Alet, P.R. iCabarrocas, All-in situ fabrication and characterization of silicon nanowires on TCO/glass substrates for photovoltaic application. Sol. Energy Mater. Sol. Cells 94, 1855 (2010)CrossRefGoogle Scholar
  22. 22.
    S.K. Chong, B. Goh, C. Dee, S. Rahman, Effect of substrate to filament distance on formation and photoluminescence properties of indium catalyzed silicon nanowires using hot-wire chemical vapor deposition. Thin Solid Films 529, 153 (2013)CrossRefGoogle Scholar
  23. 23.
    A. Convertino, M. Cuscun, G. Nicotra, C. Spinella, L. Felisari, G. Fortunato, F. Martelli, Low-temperature growth of In-assisted silicon. Cryst. Growth 335, 10 (2011)CrossRefGoogle Scholar
  24. 24.
    F. Iacopi, Y. Eichhammer, C. Massy, P.M. Vereecken, N. Moelans, O. Richard, D. Smeets, B. Blanpain, S. De Gendt, M. Heyns, Indium-assisted growth of Si nanowires: perespectives on controlled growth for CMOS applications, in MRS Proceedings, 1080.  https://doi.org/10.1557//proc-1080-o05-01
  25. 25.
    I. Zardo, L. Yu, S. Conesa Boj, S. Estrade, P.J. Alet, J. Rossler, M. Frimmer, P.R. Cabarrocas, F. Peiro, J. Arbiol, J.R. Morante, A.F. Moral, Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowires. Nanotechnology 20, 155602 (2009)CrossRefGoogle Scholar
  26. 26.
    L. Yu, P.J. Alet, G. Picardi, I. Maurin, P.R.I. Cabarrocas, Synthesis, morphology and compositional evolution of silicon nanowires directly grown on SnO2 substrates. Nanotechnology 19, 485605 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’EnergieTechnopôle de Borj-CédriaTunisTunisia
  2. 2.Département de physiqueLaPhyMNE, Faculté des Sciences de GabèsGabèsTunisia

Personalised recommendations