Advertisement

Enhanced piezoelectric, optical, mechanical, and laser damage threshold studies on creatinine doped glycine single crystals

  • P. Justin
  • K. AnithaEmail author
  • M. Basheer Ahamed
  • G. V. Vijayaraghavan
Article
  • 45 Downloads

Abstract

Single crystals of glycine (GL) and creatinine doped glycine (GLC) crystals were crystallized using slow evaporation solution growth technique. Structural analysis of the grown crystals has been carried out using single crystal XRD. The polymorphic forms and lattice parameters of glycine crystals were confirmed. The identification of functional groups and the intensity variation, peak shifting caused by creatinine in glycine crystals were recognized by Raman spectroscopic analysis. Good optical quality and the optical parameters such as optical band gap, cut-off wavelength, transmittance were inferred from UV–Visible spectroscopy. Second Harmonic Generation (SHG) shows significant enhancement in the efficiency of GLC crystal. GLC exhibited improved piezoelectric coefficient d33 of 8 pC/N which was higher compared with other glycine crystals. The incorporation of creatinine increases the mechanical strength and laser stability (41.93 GW/cm2) of GLC crystals. In doped glycine crystal, dielectric constant increases with decrease in dielectric loss. All enhanced physical properties of GLC crystal were investigated which proposes the suitability of GLC crystal towards Optoelectronic applications.

Notes

References

  1. 1.
    G. Bhagavannarayana, R.V. Ananthamurthy, G.C. Budakoti, B. Kumar, K.S. Bartwal, A study of the effect of annealing on Fe-doped LiNbO3 by HRXRD, XRT and FT–IR. J. Appl. Cryst. 38, 768–771 (2005)CrossRefGoogle Scholar
  2. 2.
    J. Guo, J.J. Xie, D.J. Li, G.L. Yang, F. Chen, C.R. Wang et al., Doped GaSe crystals for laser frequency conversion. Light 4, 1–12 (2015)CrossRefGoogle Scholar
  3. 3.
    N. Zhao, H. Fan, X. Rena, J. Ma, J. Bao, Y. Guo, Y. Zhou et al., Dielectric, conductivity and piezoelectric properties in (0.67-x) BiFeO3-0.33BaTiO(3)-xSrZrO(3) ceramics. Ceram. Int. 44(15), 18821–18827 (2018)CrossRefGoogle Scholar
  4. 4.
    E. Meirzadeh, I. Azuri, Y. Qi, D. Ehre, A.M. Rappe, M. Lahav et al., Origin and structure of polar domains in doped molecular crystals. Nat. Commun. 7, 13351 (2016)CrossRefGoogle Scholar
  5. 5.
    B. Sivasankari, P. Selvarajan, Growth and characterization of ULMA single crystals doped with ammonium chloride. J. Mater. (2013).  https://doi.org/10.1155/2013/216732 Google Scholar
  6. 6.
    S. Arockia Avila, S. Selvakumar, M. Francis, A. Leo Rajesh, Synthesis, growth and characterization of l-alanine potassium chloride single crystal: a phase-matchable semi-organic material for second and third order NLO applications. J. Mater. Sci. 28, 1051–1059 (2017)Google Scholar
  7. 7.
    N.Y. Maharani, A. Cyrac Peter, S. Gopinath, S. Tamilselvan, M. Vimalan, I. Vetha Potheher, Growth and characterization of amino based organic nonlinear optical l-Lysine-K-Aspartate (LLA) single crystal for electo-optic applications. J. Mater. Sci. 27, 5006–5015 (2015)Google Scholar
  8. 8.
    P. Justin, K. Anitha, Influence of formic acid on optical and electrical properties of glycine crystal. Mater. Res. Express 4, 115101 (2017)CrossRefGoogle Scholar
  9. 9.
    Zbigniew Tylczynski, Piotr Busz, Low-temperature phase transition in g-glycine single crystal. Pyroelectric, piezoelectric, dielectric and elastic properties. Mater. Chem. Phys. 183, 252–262 (2016)CrossRefGoogle Scholar
  10. 10.
    K.S. Kunihisa, Optical activity of g-glycine. Mol. Cryst. Liq. Cryst. 30, 233–238 (1975)CrossRefGoogle Scholar
  11. 11.
    G. Peramaiyan, P. Pandi, V. Jayaramakrishnan, S. Das, R. Mohan Kumar, Investigation on second and third order nonlinear optical, phase matching and birefringence properties of g-glycine single crystals. Opt. Mater. 35, 309 (2012)CrossRefGoogle Scholar
  12. 12.
    C.S. Towler, R.J. Davey, R.W. Lancaster, ChJ Price, Impact of molecular speciation on crystal nucleation in polymorphic systems: the conundrum of g-glycine and molecular ‘self poisoning’. J. Am. Chem. Soc. 126, 13347–13353 (2004)CrossRefGoogle Scholar
  13. 13.
    K. Srinivasan, Crystal growth of α and γ-glycine polymorphs and their polymorphic phase transformations. J. Cryst. Growth 311, 156–162 (2008)CrossRefGoogle Scholar
  14. 14.
    M. Narayan Bhat, S.M. Dharmaprakash, Growth of nonlinear optical γ-glycine crystals. J. Cryst. Growth 236, 376–380 (2002)CrossRefGoogle Scholar
  15. 15.
    M. Esthaku Peter, P. Ramasamy, Growth of gamma glycine crystal and its characterisation. Spectrochim. Acta A 75, 1417–1421 (2010)CrossRefGoogle Scholar
  16. 16.
    P.V. Dhanaraj, N.P. Rajesh, Growth and characterization of nonlinear optical γ-glycine single crystal from lithium acetate as solvent. Mater. Chem. Phys. 115, 413–417 (2009)CrossRefGoogle Scholar
  17. 17.
    B.N. Moolya, A. Jayarama, M.R. Sureshkumar, S.M. Dharmaprakash, Hydrogen bonded nonlinear optical γ-glycine: crystal growth and characterization. J. Cryst. Growth 280, 581–586 (2005)CrossRefGoogle Scholar
  18. 18.
    T. Balakrishnan, R. RameshBabu, K. Ramamurthi, Growth, structural, optical and thermal properties of γ-glycine crystal. Spectrochim. Acta A 69, 1114–1118 (2008)CrossRefGoogle Scholar
  19. 19.
    S.A.C. Azhagan, S. Ganesan, Studies on the growth, structural, optical, SHG and thermal properties of γ-glycine single crystal: an organic nonlinear optical crystal. Optik 124, 4452–4455 (2013)CrossRefGoogle Scholar
  20. 20.
    N. Sivakumar, V. Jayaramakrishnan, K. Baskar, G. Anbalagan, Synthesis, growth and characterization of γ-glycine a promising material for optical applications. Opt. Mater. 37, 780–787 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Muralidharan, K.S. Nagaraja, M.R. Udupa, Cobalt (II) complexes of creatinine transit. Met. Chem. 9, 128 (1984)CrossRefGoogle Scholar
  22. 22.
    N. Okabe, Y. Kohyama, K. Ikeda, A Zinc(II) complex of creatinine. Acta Cryst C 51, 222 (1995)CrossRefGoogle Scholar
  23. 23.
    A.J. Canty, N. Chaichit, B.M. Gatehouse, Organometallic compounds containing a guanidium group crystal and molecular strucuture of (creatinine)phenylmercury (II) nitrate monohydrate. Acta Cryst B 35, 592 (1979)CrossRefGoogle Scholar
  24. 24.
    A.J. Canty, M. Fyfe, B.M. Gatehouse, Organometallic compounds containing a guanidium group phenylmercury (II) derivatives of creatine and creatinine. Inorg. Chem. 17, 1467 (1978)CrossRefGoogle Scholar
  25. 25.
    K. Muhideen, S. Raman, K. Ramamurthi, R. Perumalsamy, Growth and physical characterization of organic nonlinear optical single crystal: N,N- diphenylguanidinium formate. Opt. Laser Technol. 91, 159–165 (2017)CrossRefGoogle Scholar
  26. 26.
    G. Saravana Kumar, P. Murugakoothan, Synthesis, spectral analysis, optical and thermal properties of new organic NLO crystal: NN’ Diphenylguanidinium nitrate. Spectrochim. Acta Part A 31C, 17–21 (2014)CrossRefGoogle Scholar
  27. 27.
    T.P. Srinivasan, R. Indirajith, R. Gopalakrishnan, Growth and characterization of α and γ-glycine single crystals. J. Cryst. Growth 318, 762–767 (2011)CrossRefGoogle Scholar
  28. 28.
    K. Boopathi, P. Rajesh, P. Ramasamy, P. Manyum, Comparative studies of glycine added potassium dihydrogen phosphate single crystals grown by conventional and Sankaranaryanan-Ramasamy methods. Opt. Mater. 35, 954–961 (2013)CrossRefGoogle Scholar
  29. 29.
    M. Anis, S.P. Ramteke, M.D. Shirsat, G.G. Muley, M.I. Baig, Novel report on γ-glycine single crystal yielding high second harmonic generation efficiency. Opt. Mater. 72, 590–595 (2017)CrossRefGoogle Scholar
  30. 30.
    S. Goel, N. Sinha, H. Yadav, A.J. Joseph, A. Hussain, B. Kumar, Optical, Piezoelectric and mechanical properties of xylenol orange doped ADP single crystals for NLO applications. Arab. J. Chem. (2017).  https://doi.org/10.1016/j.arabjc.2017.03.003 Google Scholar
  31. 31.
    Z. Liu, H. Fan, Y. Zhao, G. Dong, Optical and tunable dielectric properties of K0.5Na0.5NbO3-SrTiO3 ceramics. J. Am. Ceram. Soc. 99(1), 146–151 (2016)CrossRefGoogle Scholar
  32. 32.
    A.M. Abdulwahab, Influence of cobalt- doping on the optical properties of zinc tris-thiourea sulfate (ZTS) single crystal. J. Phys. Commun. 2, 115005 (2018)CrossRefGoogle Scholar
  33. 33.
    P. Justin, K. Anitha, S.S.R. Inbanathan, G. Giester, M. Fleck, Growth, structural, thermal, mechanical, optical and third order nonlinear optical studies of 3-hydroxy 2-nitropyridine single crystal. Opt. Mater. 86, 562–570 (2018)CrossRefGoogle Scholar
  34. 34.
    A. Silambarasan, M. Krishna Kumar, A. Thirunavukkarasu, R. Mohan Kumar, P.R. Umarani, Synthesis, crystal growth, solubility, structural, optical, dielectric and microhardness studies of benzotriazole-4-hydroxybenzoic acid single crystals. J. Cryst. Growth 420, 11 (2015)CrossRefGoogle Scholar
  35. 35.
    J. Dalal, N. Sinha, B. Kumar, Structural, optical and dielectric studies of novel non-linear Bisglycine Lithium Nitrate piezoelectric single crystal. Opt. Mater. 37, 457–463 (2014)CrossRefGoogle Scholar
  36. 36.
    S.M. Azhar, M. Anis, S.S. Hussaini, S. Kalainathan, M.D. Shirsat, G. Rabbani, Dielectric, etching, and Z-Scan studies of glycine doped potassium thiourea chloride crystal. Mater. Sci. Pol. 34, 800–805 (2016)CrossRefGoogle Scholar
  37. 37.
    J. Dalal, B. Kumar, Remarkable Enhancement in dielectric, piezoelectric, ferroelectric and SHG Properties by iron doping in sodium para-nitrophenolate dihydrate single crystals. Mater. Lett. (2015).  https://doi.org/10.1016/j.matlet.2015.11.113 Google Scholar
  38. 38.
    P.R. Deepthi, J. Shanthi, Optical, dielectric & ferroelectric studies on amino acids doped tgs single crystals. RSC Adv. 13, 1–3 (2013)Google Scholar
  39. 39.
    Q. Chang, H. Fan, C. Long, Effect of isovalent lanthanide cations compensation for volatilized A-site bismuth in Aurivillius ferroelectric bismuth titanate. J. Mater. Sci. 28(6), 4637–4646 (2017)Google Scholar
  40. 40.
    Y. Zhao, H. Fan, G. Dong, Z. Liu, Enhanced electromechanical properties and conduction behaviors of Aurivillius Bi4Ti2.95(B1/3Nb2/3) (0.05)O-12 (B = Mg, Zn, Cu) ceramics. Mater. Lett. 174, 242–245 (2017)CrossRefGoogle Scholar
  41. 41.
    R. Ashok kumar, R. Ezhil Vizhi, V. Narayanasamy, D. Rajan Babu, Structural, dielectric, and piezoelectric properties of nonlinear optical γ-glycine single crystals. Phys. B 406(13), 2594–2600 (2011)CrossRefGoogle Scholar
  42. 42.
    J. Dalal, B. Kumar, Bulk crystal growth, optical, mechanical and ferroelectric properties of new semi organic nonlinear optical and piezoelectric Lithium nitrate monohydrate oxalate single crystal. Opt. Mater. 51, 139–147 (2016)CrossRefGoogle Scholar
  43. 43.
    K. Ambujam, K. Rajarajan, S. Selvakumar, I. Vetha Potheher, Growth and characterization of a novel NLO crystal bis-glycine hydrogen chloride (BGHC). J. Cryst. Growth 286, 440–444 (2006)CrossRefGoogle Scholar
  44. 44.
    M. Anbuchezhiyan, S. Ponnusamy, S.P. Singh, P.K. Pal, P.K. Datta, Effect of strontium chloride on the optical and mechanical properties of γ–glycine crystals. Cryst. Res. Technol. 45(5), 497–502 (2010)CrossRefGoogle Scholar
  45. 45.
    B. NarayanaMoolya, A. Jayarama, M.R. Sureshkumar, S.M. Dharmaprakash, Hydrogen bonded nonlinear optical g-glycine: crystal growth and characterization. J. Cryst. Growth 280, 581–586 (2005)CrossRefGoogle Scholar
  46. 46.
    N. Sivakumar, V. Jayaramakrishnan, K. Baskar, G. Anbalagan, Synthesis, growth and characterization of γ-glycine: a promising material for optical applications. Opt. Mater. 37, 780–787 (2014).  https://doi.org/10.1016/j.optmat.2014.09.007 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • P. Justin
    • 1
  • K. Anitha
    • 1
    Email author
  • M. Basheer Ahamed
    • 2
  • G. V. Vijayaraghavan
    • 2
  1. 1.School of PhysicsMadurai Kamaraj UniversityMaduraiIndia
  2. 2.Department of PhysicsB.S.A. Crescent Institute of Science & TechnologyChennaiIndia

Personalised recommendations