A solvothermal induced self-assembling of SnO2/exfoliated graphite composite with enhanced lithium storage performances

  • Yong LiEmail author
  • Xiaomeng He
  • Yun Zhao
  • Changzhen Wang
  • Chunguang Gao
  • Yongxiang ZhaoEmail author


A new solvothermal induced self-assembling method was investigated for the facile synthesis of SnO2/exfoliated graphite (EG) composite without any structure-directing agents. With the assistance of solvothermal treatment in an acetone-H2O mixture, ultra-small SnO2 nanoparticles of less than 10 nm could be transformed from a metastable state in colloidal solution to a highly-dispersed state on the inert surface of EG which was not acid-treated beforehand. The preparation conditions such as solvothermal time and SnO2 adding amount were found to be important factors influencing the structure and electrochemical performance of the composites. The half-sell using the SnO2/EG composite as an electrode exhibited a greatly enhanced lithium storage capacity of 910 mAh g−1 at the current density of 100 mA g−1 after 200 cycles and a moderate rate capability of 385 mAh g−1 at 1000 mA g−1. Compared with previous studies, this solvothermal induced self-assembling process supplies not only a promising anode material for newly advanced Li-ion batteries, but also a green and scalable approach for the preparation of metal oxide/carbon composites.



This work was financially supported by National Scientific Research Funding of China [No. 51702191, No. 21603127], Natural Science Foundation of Shanxi Province [No. 201701D221062, No. 201801D221099], Scientific and Technological Innovation Programs of High Education Institutions in Shanxi [No. 2017110]. The authors thank the Scientific Instrument Center of Shanxi University for the Kindly Help in material characterizations.


  1. 1.
    S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421 (2014)CrossRefGoogle Scholar
  2. 2.
    L. Liu, F. Xie, J. Lyu, T. Zhao, T. Li, B.G. Choi, Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries. J. Power Sources 321, 11 (2016)CrossRefGoogle Scholar
  3. 3.
    J.S. Chen, X.W. Lou, SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9, 1877 (2013)CrossRefGoogle Scholar
  4. 4.
    M. He, L. Yuan, X. Hu, W. Zhang, J. Shu, Y. Huang, A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries. Nanoscale 5, 3298 (2013)CrossRefGoogle Scholar
  5. 5.
    Y. Deng, C. Fang, G. Chen, The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: a review. J. Power Sources 304, 81 (2016)CrossRefGoogle Scholar
  6. 6.
    M.M. Zhao, Q.X. Zhao, J.Q. Qiu, H.G. Xue, H. Pang, Tin-based nanomaterials for electrochemical energy storage. RSC Adv. 6, 95449 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Zhao, J. Li, N. Wang, C. Wu, G. Dong, L. Guan, Fully reversible conversion between SnO2 and Sn in SWNTs@SnO2@PPy coaxial nanocable as high performance anode material for lithium ion batteries. J. Phys. Chem. C 116, 18612 (2012)CrossRefGoogle Scholar
  8. 8.
    Q.S. Wang, J.Q. Xu, G.Y. Shen, Y.Q. Guo, X. Zhao, Y.J. Xia, H.B. Sun, P.Y. Hou, W.H. Xie, X.J. Xu, Large-scale carbon framework microbelts anchoring ultrafine SnO2 nanoparticles with enhanced lithium storage properties. Electrochim. Acta 297, 879 (2019)CrossRefGoogle Scholar
  9. 9.
    L.G. Yi, L. Liu, G.X. Guo, X.Y. Chen, Y. Zhang, S.Y. Yu, X.Y. Wang, Expanded graphite@SnO2@ polyaniline composite with enhanced performance as anode materials for lithium ion batteries. Electrochim. Acta 240, 63 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Shah, J. Lee, A.R. Park, Y. Choi, W.J. Kim, J. Park, C.H. Chung, J. Kim, B. Lim, P.J. Yoo, Ultra-fine SnO2 nanoparticles doubly embedded in amorphous carbon and reduced graphene oxide (rGO) for superior lithium storage. Electrochim. Acta 224, 201 (2017)CrossRefGoogle Scholar
  11. 11.
    J. Liang, C. Yuan, H. Li, K. Fan, Z. Wei, H. Sun, J. Ma, Growth of SnO2 nanoflowers on N-doped carbon nanofibers as anode for Li- and Na-ion batteries. Nanomicro Lett. 10, 21 (2017)Google Scholar
  12. 12.
    F. Wang, H. Jiao, E. He, S. Yang, Y. Chen, M. Zhao, X. Song, Facile synthesis of ultrafine SnO2 nanoparticles embedded in carbon networks as a high-performance anode for lithium-ion batteries. J. Power Sources 326, 78 (2016)CrossRefGoogle Scholar
  13. 13.
    H. Liu, Carbon nanotubes anchored with SnO2 nanosheets as anode for enhanced Li-ion storage. J. Mater. Sci.: Mater. Electron. 25, 3353 (2014)Google Scholar
  14. 14.
    J. Wang, L. Wang, S. Zhang, S. Liang, X. Liang, H. Huang, W. Zhou, J. Guo, Facile synthesis of iron-doped SnO2/reduced graphene oxide composite as high-performance anode material for lithium-ion batteries. J. Alloy. Compd. 748, 1013 (2018)CrossRefGoogle Scholar
  15. 15.
    M. Sahoo, S. Ramaprabhu, One-pot environment-friendly synthesis of boron doped graphene-SnO2 for anodic performance in Li ion battery. Carbon 127, 627 (2018)CrossRefGoogle Scholar
  16. 16.
    X.H. Liu, T.T. Ma, L. Sun, Y.S. Xu, J. Zhang, N. Pinna, Enhancing the lithium storage performance of graphene/SnO2 nanorods by a carbon-riveting strategy. Chemsuschem 11, 1321 (2018)CrossRefGoogle Scholar
  17. 17.
    W. Zhang, M. Li, X. Xiao, X. Huang, Y. Jiang, X. Fan, L. Chen, In situ synthesis of ultrasmall SnO2 quantum dots on nitrogen-doped reduced graphene oxide composite as high performance anode material for lithium-ion batteries. J. Alloy. Compd. 727, 1 (2017)CrossRefGoogle Scholar
  18. 18.
    I. Elizabeth, R.B. Mathur, P.H. Maheshwari, B.P. Singh, S. Gopukumar, Development of SnO2/multiwalled carbon nanotube paper as free standing anode for lithium ion batteries (LIB). Electrochim. Acta 176, 735 (2015)CrossRefGoogle Scholar
  19. 19.
    Z. Li, G. Wu, S. Deng, S. Wang, Y. Wang, J. Zhou, S. Liu, W. Wu, M. Wu, Combination of uniform SnO2 nanocrystals with nitrogen doped graphene for high-performance lithium-ion batteries anode. Chem. Eng. J. 283, 1435 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Li, Y. Zhao, C. Ma, Y. Zhao, Novel solvent-thermal preparation of a SnO2 nanoparticles/expanded graphite multiscale composite with extremely enhanced electrical performances for Li-ion batteries. Electrochim. Acta 218, 191 (2016)CrossRefGoogle Scholar
  21. 21.
    X. Lu, H. Wang, Z. Wang, Y. Jiang, D. Cao, G. Yang, Room-temperature synthesis of colloidal SnO2 quantum dot solution and ex situ deposition on carbon nanotubes as anode materials for lithium ion batteries. J. Alloy. Compd. 680, 109 (2016)CrossRefGoogle Scholar
  22. 22.
    X. Zhang, J. Zhang, Y. Liu, X. Wang, B. Li, Improving the anode performances of TiO2–carbon–rGO composites in lithium ion batteries by UV irradiation. New J. Chem. 39, 9345 (2015)CrossRefGoogle Scholar
  23. 23.
    C. Ma, C. Ma, J. Wang, H. Wang, J. Shi, Y. Song, Q. Guo, L. Liu, Exfoliated graphite as a flexible and conductive support for Si-based Li-ion battery anodes. Carbon 72, 38 (2014)CrossRefGoogle Scholar
  24. 24.
    Y. Zhao, C. Ma, Y. Li, H. Chen, Z. Shao, Self-adhesive Co3O4/expanded graphite paper as high-performance flexible anode for Li-ion batteries. Carbon 95, 494 (2015)CrossRefGoogle Scholar
  25. 25.
    M. Zhang, D. Lei, Z. Du, X. Yin, L. Chen, Q. Li, Y. Wang, T. Wang, Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions. J. Mater. Chem. 21, 1673 (2011)CrossRefGoogle Scholar
  26. 26.
    C. Zhang, X. Peng, Z. Guo, C. Cai, Z. Chen, D. Wexler, S. Li, H. Liu, Carbon-coated SnO2/graphene nanosheets as highly reversible anode materials for lithium ion batteries. Carbon 50, 1897 (2012)CrossRefGoogle Scholar
  27. 27.
    Y. Zhao, Y. Li, C. Ma, Z. Shao, Micro-/nano-structured hybrid of exfoliated graphite and Co3O4 nanoparticles as high-performance anode material for Li-ion batteries. Electrochim. Acta 213, 98 (2016)CrossRefGoogle Scholar
  28. 28.
    H. Kim, G.O. Park, Y. Kim, S. Muhammad, J. Yoo, M. Balasubramanian, Y.-H. Cho, M.-G. Kim, B. Lee, K. Kang, H. Kim, J.M. Kim, W.-S. Yoon, New insight into the reaction mechanism for exceptional capacity of ordered mesoporous SnO2 electrodes via synchrotron-based X-ray analysis. Chem. Mater. 26, 6361 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Li, W. Xie, S. Wang, X. Jiang, S. Peng, D. He, Facile synthesis of rGO/SnO2composite anodes for lithium ion batteries. J. Mater. Chem. A 2, 17139 (2014)CrossRefGoogle Scholar
  30. 30.
    Z. Wang, D. Luan, S. Madhavi, Y. Hu, X.W. Lou, Assembling carbon-coated [small alpha]-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ. Sci. 5, 5252 (2012)CrossRefGoogle Scholar
  31. 31.
    S.-L. Chou, J.-Z. Wang, D. Wexler, K. Konstantinov, C. Zhong, H.-K. Liu, S.-X. Dou, High-surface-area [small alpha]-Fe2O3/carbon nanocomposite: one-step synthesis and its highly reversible and enhanced high-rate lithium storage properties. J. Mater. Chem. 20, 2092 (2010)CrossRefGoogle Scholar
  32. 32.
    Q. Tian, Y. Tian, Z. Zhang, L. Yang, S.-I. Hirano, Fabrication of CNT@void@SnO2@C with tube-in-tube nanostructure as high-performance anode for lithium-ion batteries. J. Power Sources 291, 173 (2015)CrossRefGoogle Scholar
  33. 33.
    A. Ponrouch, P.-L. Taberna, P. Simon, M.R. Palacín, On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction. Electrochim. Acta 61, 13 (2012)CrossRefGoogle Scholar
  34. 34.
    H. Liu, J. Huang, X. Li, J. Liu, Y. Zhang, K. Du, Flower-like SnO2/graphene composite for high-capacity lithium storage. Appl. Surf. Sci. 258, 4917 (2012)CrossRefGoogle Scholar
  35. 35.
    H. Liu, J. Huang, X. Li, J. Liu, Y. Zhang, SnO2 nanorods grown on graphite as a high-capacity anode material for lithium ion batteries. Ceram. Int. 38, 5145 (2012)CrossRefGoogle Scholar
  36. 36.
    B. Li, H. Cao, J. Zhang, M. Qu, F. Lian, X. Kong, SnO2–carbon–RGO heterogeneous electrode materials with enhanced anode performances in lithium ion batteries. J. Mater. Chem. 22, 2851 (2012)CrossRefGoogle Scholar
  37. 37.
    N. Naresh, D. Narsimulu, P. Jena, E.S. Srinadhu, N. Satyanarayana, Microwave-assisted hydrothermal synthesis of SnO2/reduced graphene-oxide nanocomposite as anode material for high performance lithium-ion batteries. J. Mater. Sci.: Mater. Electron. 29, 14723 (2018)Google Scholar
  38. 38.
    N. Wu, W. Du, X. Gao, L. Zhao, G. Liu, X. Liu, H. Wu, Y.B. He, Hollow SnO2 nanospheres with oxygen vacancies entrapped by a N-doped graphene network as robust anode materials for lithium-ion batteries. Nanoscale 10, 11460 (2018)CrossRefGoogle Scholar
  39. 39.
    Z. Zhang, L. Wang, J. Xiao, F. Xiao, S. Wang, One-pot synthesis of three-dimensional graphene/carbon nanotube/SnO2 hybrid architectures with enhanced lithium storage properties. ACS Appl. Mater. Interfaces 7, 17963 (2015)CrossRefGoogle Scholar
  40. 40.
    M. Gao, X. Chen, H. Pan, L. Xiang, F. Wu, Y. Liu, Ultrafine SnO2 dispersed carbon matrix composites derived by a sol–gel method as anode materials for lithium ion batteries. Electrochim. Acta 55, 9067 (2010)CrossRefGoogle Scholar
  41. 41.
    S.-D. Xu, Q.-C. Zhuang, L.-L. Tian, Y.-P. Qin, L. Fang, S.-G. Sun, Impedance spectra of nonhomogeneous, multilayered porous composite graphite electrodes for Li-ion batteries: experimental and theoretical studies. J. Phys. Chem. C 115, 9210 (2011)CrossRefGoogle Scholar
  42. 42.
    M.-S. Park, Y.-M. Kang, G.-X. Wang, S.-X. Dou, H.-K. Liu, The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv. Funct. Mater. 18, 455 (2008)CrossRefGoogle Scholar
  43. 43.
    J.G. Kim, S.H. Nam, S.H. Lee, S.M. Choi, W.B. Kim, SnO2 nanorod-planted graphite: an effective nanostructure configuration for reversible lithium ion storage. ACS Appl. Mater. Interfaces 3, 828 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Center for Fine Chemicals EngineeringShanxi UniversityTaiyuanPeople’s Republic of China
  2. 2.School of Chemistry and Chemical EngineeringShanxi UniversityTaiyuanPeople’s Republic of China
  3. 3.Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi ProvinceShanxi UniversityTaiyuanPeople’s Republic of China

Personalised recommendations