Advertisement

Photocatalytic performance of TiO2@SiO2 nanocomposites for the treatment of different organic dyes

  • Shimaa Nabih
  • Ahmed Esmail ShalanEmail author
  • Esraa Samy Abu Serea
  • Mona A. Goda
  • Mohamed Fathi Sanad
Article
  • 57 Downloads

Abstract

Photocatalytic degradation of pollutant using TiO2@SiO2 nanocomposites (NCs) is a well route for the treatment of the organic waste in aquatic life. The recent work focuses on the removal of many organic dyes like methylene blue, eosin and safranin and study the pollutant degradation of them using the activity and high efficiency of titania as well as nanostructured titania@silica. The impregnation of silica with anatase-type TiO2 was carried out through a sol–gel way. The obtained powders were checked and characterized using N2 adsorption–desorption complete isotherm at low temperature, BET, FESEM, XRD, PL, UV–Vis spectroscopy, diffuse reflectance spectra and the photocatalytic activity to attain the homogeneity distribution of the nanostructure particles inside the matrix. TiO2@SiO2 material displayed good photocatalytic properties compared to a pure titania. Different parameters as the type of the photocatalyst, pH of solution, amount of the photocatalyst and adsorption were studied. In addition, reusability for dye removal under consecutive cycles was also investigated. Photocatalytic activity and the excellent properties of the TiO2@SiO2 NCs displayed that these materials can consider being good candidate considered in water treatment applications.

Notes

Acknowledgments

British University in Egypt is appreciated by the authors for its assistance to follow up this study. Furthermore, the technical service units of Central Laboratory, Cairo University as well as CMRDI are also gratefully gratitude.

Funding

No contending financial interest proclaim by the authors.

References

  1. 1.
    K.O. Badmus, J.O. Tijani, E. Massima, L. Petrik, Environ. Sci. Pollut. Res. 25, 7299–7314 (2018)CrossRefGoogle Scholar
  2. 2.
    C. Salvador, L. Javier, C. Pablo, C. Davide, C. Giacomo, A.R. Manuel, P. Marco, Electrochim. Acta 263, 1–7 (2018)CrossRefGoogle Scholar
  3. 3.
    H. Hamad, D. Bassyouni, E.S. El-Ashtoukhy, N. Amin, M.A. El-Latif, Ecotoxicol. Environ. Saf. 148, 501–512 (2018)CrossRefGoogle Scholar
  4. 4.
    H. Wang, L. Zhang, C. Hu, X. Wang, L. Lyu, G. Sheng, Chem. Eng. J. 332, 572–581 (2018)CrossRefGoogle Scholar
  5. 5.
    A.Y. Zhang, Y.Y. He, Y.P. Chen, J.W. Feng, N.H. Huang, F. Lian, Chem. Eng. J. 334, 1430–1439 (2018)CrossRefGoogle Scholar
  6. 6.
    A.A. Attia, B.S. Girgis, N.A. Fathy, Dyes Pigm. 76, 282–289 (2008)CrossRefGoogle Scholar
  7. 7.
    C. Montserrat, A.M. Carmen, R. Josep, B. Damià, Environ. Sci. Technol. 33, 1300–1306 (1999)CrossRefGoogle Scholar
  8. 8.
    M.M. Rashad, A.E. Shalan, J. Mater. Sci. Mater. Electron. 24, 3189–3194 (2013)CrossRefGoogle Scholar
  9. 9.
    D. Farrusseng, S. Aguado, C. Pinel, Angew. Chem. Int. Ed. 48, 7502–7513 (2009)CrossRefGoogle Scholar
  10. 10.
    P.K. Malik, Dyes Pigm. 56, 239–249 (2003)CrossRefGoogle Scholar
  11. 11.
    K.V. Oomman, G. Dawei, P. Maggie, A.G. Craig, C.D. Elizabeth, J. Mater. Res. 18, 156–165 (2003)CrossRefGoogle Scholar
  12. 12.
    T. Ohno, T. Mitsui, M. Matsumura, Chem. Lett. 32, 364–365 (2003)CrossRefGoogle Scholar
  13. 13.
    I. Sopyan, M. Watanabe, S. Murasaw, K. Hashimoto, A. Fujishim, J. Electroanal. Chem. 415, 183–186 (1996)CrossRefGoogle Scholar
  14. 14.
    M.M. Rashad, A.E. Shalan, Appl. Phys. A 116, 781–788 (2014)CrossRefGoogle Scholar
  15. 15.
    G.S. Cláudia, J. Raquel, M. Tiziana, M. Raffaele, G. Hermenegildo, J. Am. Chem. Soc. 133, 595–602 (2010)Google Scholar
  16. 16.
    A.L. Linsebigler, G. Lu, J.R. Yates, Chem. Rev. 95, 735–758 (1995)CrossRefGoogle Scholar
  17. 17.
    A.E. Shalan, A.M. Elseman, M. Rasly, M.M. Moharam, M. Lira-Cantu, M.M. Rashad, RSC Adv. 5, 103095–103104 (2015)CrossRefGoogle Scholar
  18. 18.
    V. Mahmoodi, T.R. Bastami, A. Ahmadpour, Environ. Sci. Pollut. Res. 25, 1–18 (2018)CrossRefGoogle Scholar
  19. 19.
    A. Mills, C. O’Rourke, K. Moore, J. Photochem. Photobiol. A Chem. 310, 66–105 (2015)CrossRefGoogle Scholar
  20. 20.
    B. Srikanth, R. Goutham, N.R. Badri, A. Ramprasath, K.P. Gopinath, A.R. Sankaranarayanan, J. Environ. Manage. 200, 60–78 (2017)CrossRefGoogle Scholar
  21. 21.
    A. Roberto, C. Vincenzo, I. Amedeo, M. Raffaele, Catal. Today 53, 51–59 (1999)CrossRefGoogle Scholar
  22. 22.
    P.V. Kamat, D. Meisel, Curr. Opin. Colloid Interface Sci. 7, 282–287 (2002)CrossRefGoogle Scholar
  23. 23.
    C. Galindo, P. Jacques, A. Kalt, J. Photochem. Photobiol. A Chem. 130, 35–47 (2000)CrossRefGoogle Scholar
  24. 24.
    M.M. Mohamed, W.A. Bayoumy, M. Khairy, M.A. Mousa, Microporous Mesoporous Mater. 103, 174–183 (2007)CrossRefGoogle Scholar
  25. 25.
    C.Y. Jimmy, Y. Jiaguo, Z. Lizhi, H. Wingkei, J. Photochem. Photobiol. A Chem. 148, 263–271 (2002)CrossRefGoogle Scholar
  26. 26.
    R.S. Mane, O.S. Joo, W.J. Lee, S.H. Han, Micron 38, 85–90 (2007)CrossRefGoogle Scholar
  27. 27.
    F.S. Francisco, B. Juan, C. Le, C. Peter, W. Mingkui, M.Z. Shaik, G. Michael, J. Am. Chem. Soc. 131, 558–562 (2008)Google Scholar
  28. 28.
    A.E. Shalan, T. Oshikiri, S. Narra, M.M. Elshanawany, K. Ueno, H.P. Wu, K. Nakamura, X. Shi, E.W.G. Diau, H. Misawa, ACS Appl. Mater. Interfaces 8, 33592–33600 (2016)CrossRefGoogle Scholar
  29. 29.
    A.E. Shalan, M. Rasly, I. Osama, M.M. Rashad, I.A. Ibrahim, Ceram. Int. 40, 11619–11626 (2014)CrossRefGoogle Scholar
  30. 30.
    M.M.S. Sanad, A.E. Shalan, M.M. Rashad, M.H.H. Mahmoud, Appl. Surf. Sci. 359, 315–322 (2015)CrossRefGoogle Scholar
  31. 31.
    K.S. Rao, K. El-Hami, T. Kodaki, K. Matsushige, K. Makino, J. Colloid Interface Sci. 289, 125–131 (2005)CrossRefGoogle Scholar
  32. 32.
    A.E. Shalan, M.M. Rashad, Y. Yu, M. Lira-Cantú, M.S.A. Abdel-Mottaleb, Electrochim. Acta 89, 469–478 (2013)CrossRefGoogle Scholar
  33. 33.
    M.F. Sanad, A.E. Shalan, S.M. Bazid, S.M. Abdelbasir, J. Environ. Chem. Eng. 6, 3981–3990 (2018)CrossRefGoogle Scholar
  34. 34.
    M.M. Rahman, A. Jamal, S.B. Khan, M. Faisal, J. Nanopart. Res. 13, 3789–3799 (2011)CrossRefGoogle Scholar
  35. 35.
    M.M. Rashad, E.M. Elsayed, M.S. Al-Kotb, A.E. Shalan, J. Alloys Compd. 581, 71–78 (2013)CrossRefGoogle Scholar
  36. 36.
    A.M. Jirka, M.J. Carter, Anal. Chem. 47, 1397–1402 (1975)CrossRefGoogle Scholar
  37. 37.
    B. Ji, J. Zhang, C. Zhang, N. Li, T. Zhao, F. Chen, L. Hu, S. Zhang, Z. Wang, ACS Appl. Nano Mater. 1, 793–799 (2018)CrossRefGoogle Scholar
  38. 38.
    X. Deng, H. Zhang, Q. Ma, Y. Cui, X. Cheng, X. Li, M. Xie, Q. Cheng, Sep. Purif. Technol. 186, 1–9 (2017)CrossRefGoogle Scholar
  39. 39.
    R. Fateh, A.A. Ismail, R. Dillert, D.W. Bahnemann, J. Phys. Chem. C 115, 10405–10411 (2011)CrossRefGoogle Scholar
  40. 40.
    B. Sun, G. Zhou, T. Gao, H. Zhang, H. Yu, Appl. Surf. Sci. 364, 322–331 (2016)CrossRefGoogle Scholar
  41. 41.
    Y. Ku, C.N. Lin, W.M. Hou, J. Mol. Catal. A Chem. 349, 20–27 (2011)CrossRefGoogle Scholar
  42. 42.
    D. Chen, A.K. Ray, Water Res. 32, 3223 (1998)CrossRefGoogle Scholar
  43. 43.
    A. Mills, S. Morris, J. Photobiol. A Chem. 71, 75 (1993)CrossRefGoogle Scholar
  44. 44.
    C.A. Le Duc, J.M. Campbell, J.A. Rossin, Ind. Eng. Chem. Res. 35, 2473 (1996)CrossRefGoogle Scholar
  45. 45.
    S.H. Wu, D.H. Chen, J. Colloid Interface Sci. 273, 165–169 (2004)CrossRefGoogle Scholar
  46. 46.
    Z.M. El-Bahy, A.A. Ismail, R.M. Mohamed, J. Hazard. Mater. 166, 138–143 (2009)CrossRefGoogle Scholar
  47. 47.
    A. Helal, F.A. Harraz, A.A. Ismail, T.M. Sami, I.A. Ibrahim, Appl. Catal. B Environ. 213, 18–27 (2017)CrossRefGoogle Scholar
  48. 48.
    M. Faisal, F.A. Harraz, A.A. Ismail, A.M. El-Toni, S.A. Al-Sayari, A. Al-Hajry, M.S. Al-Assiri, Sep. Purif. Technol. 190, 33–44 (2018)CrossRefGoogle Scholar
  49. 49.
    L. Zhang, Y. Li, Q. Zhang, H. Wang, Cryst. Eng. Commun. 15, 5986–5993 (2013)CrossRefGoogle Scholar
  50. 50.
    K.R. Reddy, K.V. Karthik, S.B.B. Prasad, S.K. Soni, H.M. Jeong, A.V. Raghu, Polyhedron 120, 169–174 (2016)CrossRefGoogle Scholar
  51. 51.
    T. Zheng, J. Xu, Z. Zhang, H. Zeng, RSC Adv. 5, 99658–99663 (2015)CrossRefGoogle Scholar
  52. 52.
    A.A. Ismail, D.W. Bahnemann, J. Mater. Chem. 21, 11686–11707 (2011)CrossRefGoogle Scholar
  53. 53.
    C.X. Feng, S.Z. Wang, B.Y. Geng, Nanoscale 3, 3695–3699 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Basic Science DepartmentModern Academy for Engineering and TechnologyMaadiEgypt
  2. 2.Advanced Materials Division, Electronic & Magnetic Materials DepartmentCentral Metallurgical Research and Development Institute (CMRDI)Helwan, CairoEgypt
  3. 3.Chemistry & Biochemistry Department, Faculty of ScienceCairo UniversityCairoEgypt
  4. 4.Chemistry Department, Faculty of ScienceCairo UniversityCairoEgypt
  5. 5.Basic Science DepartmentBritish University in EgyptEl-Sherouk City, CairoEgypt

Personalised recommendations