Effect of structural disorder on the electronic and phononic properties of Hf doped BaTiO3

Abstract

The classical ferroelectric material BaTiO3 has been doped with large cation i.e., Hf at Ti site in order to understand the effect of structural disorder in electronic and phononic state. The Raman spectroscopy measurement on these samples indicates increase in the structural disorder with Hf doping. The detail analysis of the Raman spectroscopy data clearly suggests the appearance of new Raman mode at ~ 780 cm−1 and the presence of an asymmetry in almost all Raman modes. The appearance of new Raman mode has been attributed due to the structural disorder induced phonon modes; and this is further confirmed using laser irradiation studies. Additionally, it has been observed that the intensity of this new phonon mode increases systematically with Hf doping; indicating increase in the phononic disorder. It has been observed that the line shape Raman phonon modes show significant asymmetry and this asymmetry along with the full peak width at half maxima (FWHM) of Raman phonon mode shows systematic variation with Hf doping. The observed asymmetric Raman line profile has been analysed through Fano model of electron–phonon coupling which suggests an increase in the electron–phonon coupling with Hf doping. In order to get further insight on increase in the electron–phonon coupling near band edge optical absorption spectroscopy measurements has been carried out and value of electronic disorder in the form of Urbach energy has been estimated and the same is observed to scale with Hf doping. Thus, the systematic increase in the intensity of disorder phonon mode and that of electronic disorder has been observed. This suggests that structural disorder not only affects phonons but electronic state of the system as well. Thus, it appears that the increase in the width of electronic and phononic disorder may overlap in energy scale and may be responsible for the observed increase in the electron–phonon coupling parameter as estimated through Fano equation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 88, 410 (2000)

    Article  Google Scholar 

  2. 2.

    J. Zhao, L. Li, Y. Wang, Z. Gui, Mater. Sci. Eng., B 99, 207 (2003)

    Article  Google Scholar 

  3. 3.

    G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)

    Article  Google Scholar 

  4. 4.

    X. Wang, B.I. Lee, M.Z. Hu, E.A. Payzant, D.A. Blom, J. Mater. Sci. 14, 495 (2003)

    Google Scholar 

  5. 5.

    S.Y. Wang, B.L. Cheng, C. Wang, S.A.T. Redfern, S.Y. Dai, K.J. Jin, H.B. Lu, Y.L. Zhou, Z.H. Chen, G.Z. Yang, J. Phys. Appl. Phys. 38, 2253 (2005)

    Article  Google Scholar 

  6. 6.

    N.-H. Chan, R.K. Sharma, D.M. Smyth, J. Am. Ceram. Soc. 65, 167 (1982)

    Article  Google Scholar 

  7. 7.

    Z. Yao, H. Liu, Y. Liu, Z. Wu, Z. Shen, Y. Liu, M. Cao, Mater. Chem. Phys. 109, 475 (2008)

    Article  Google Scholar 

  8. 8.

    X.G. Tang, K.-H. Chew, H.L.W. Chan, Acta Mater. 52, 5177 (2004)

    Article  Google Scholar 

  9. 9.

    S. Anwar, P.R. Sagdeo, N.P. Lalla, J. Phys. 18, 3455 (2006)

    Google Scholar 

  10. 10.

    S. Anwar, P.R. Sagdeo, N.P. Lalla, Solid State Commun. 138, 331 (2006)

    Article  Google Scholar 

  11. 11.

    V. Mishra, A. Sagdeo, V. Kumar, M.K. Warshi, H.M. Rai, S.K. Saxena, D.R. Roy, V. Mishra, R. Kumar, P.R. Sagdeo, J. Appl. Phys. 122, 065105 (2017)

    Article  Google Scholar 

  12. 12.

    M.B. Smith, K. Page, T. Siegrist, P.L. Redmond, E.C. Walter, R. Seshadri, L.E. Brus, M.L. Steigerwald, J. Am. Chem. Soc. 130, 6955–6963 (2008)

    Article  Google Scholar 

  13. 13.

    A. von Hippel, Rev. Mod. Phys. 22, 221 (1950)

    Article  Google Scholar 

  14. 14.

    G.H. Kwei, A.C. Lawson, S.J.L. Billinge, S.W. Cheong, J. Phys. Chem. 97, 2368 (2002)

    Article  Google Scholar 

  15. 15.

    M. El Marssi, F. Le Marrec, I.A. Lukyanchuk, M.G. Karkut, J. Appl. Phys. 94, 3307 (2003)

    Article  Google Scholar 

  16. 16.

    Y. Luspin, J.L. Servoin, F. Gervais, J. Phys. C 13, 3761 (1980)

    Article  Google Scholar 

  17. 17.

    Y. Shiratori, C. Pithan, J. Dornseiffer, R. Waser, J. Raman Spectrosc. 38, 1288 (2007)

    Article  Google Scholar 

  18. 18.

    J. Bhosale, A.K. Ramdas, A. Burger, A. Muñoz, A.H. Romero, M. Cardona, R. Lauck, R.K. Kremer, Phys. Rev. B 86, 195208 (2012)

    Article  Google Scholar 

  19. 19.

    J.Q. Qi, T. Peng, Y.M. Hu, L. Sun, Y. Wang, W.P. Chen, L.T. Li, C.W. Nan, H.L.W. Chan, Nanoscale Res. Lett. 6, 466 (2011)

    Article  Google Scholar 

  20. 20.

    U.D. Venkateswaran, V.M. Naik, R. Naik, Phys. Rev. B 58, 14256 (1998)

    Article  Google Scholar 

  21. 21.

    S. Berweger, C.C. Neacsu, Y. Mao, H. Zhou, S.S. Wong, M.B. Raschke, Nat. Nanotechnol. 4, 496 (2009)

    Article  Google Scholar 

  22. 22.

    S.-Y. Kuo, W.-Y. Liao, W.-F. Hsieh, Phys. Rev. B 64, 224103 (2001)

    Article  Google Scholar 

  23. 23.

    A. Raeliarijaona, H. Fu, Phys. Rev. B 92, 094303 (2015)

    Article  Google Scholar 

  24. 24.

    Y.I. Yuzyuk, P. Simon, Phys. Rev. B 68, 216101 (2003)

    Article  Google Scholar 

  25. 25.

    R.A.P. Ribeiro, S.R. de Lázaro, Quím. Nova 37, 1165 (2014)

    Article  Google Scholar 

  26. 26.

    L.P. Curecheriu, M. Deluca, Z.V. Mocanu, M.V. Pop, V. Nica, N. Horchidan, M.T. Buscaglia, V. Buscaglia, M. van Bael, A. Hardy, L. Mitoseriu, Phase Transit. 86, 703 (2013)

    Article  Google Scholar 

  27. 27.

    P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 89, 8085 (2001)

    Article  Google Scholar 

  28. 28.

    M. Osada, M. Kakihana, S. Wada, T. Noma, W.-S. Cho, Appl. Phys. Lett. 75, 3393 (1999)

    Article  Google Scholar 

  29. 29.

    U.M. Pasha, H. Zheng, O.P. Thakur, A. Feteira, K.R. Whittle, D.C. Sinclair, I.M. Reaney, Appl. Phys. Lett. 91, 062908 (2007)

    Article  Google Scholar 

  30. 30.

    J. Pokorný, U.M. Pasha, L. Ben, O.P. Thakur, D.C. Sinclair, I.M. Reaney, J. Appl. Phys. 109, 114110 (2011)

    Article  Google Scholar 

  31. 31.

    X. Chen, J. Chen, D. Ma, L. Fang, H. Zhou, Ceram. Int. 41, 2081 (2015)

    Article  Google Scholar 

  32. 32.

    D.P. Dutta, M. Roy, N. Maiti, A.K. Tyagi, Phys. Chem. Chem. Phys. 18, 9758 (2016)

    Article  Google Scholar 

  33. 33.

    E.V. Ramana, F. Figueiras, A. Mahajan, D.M. Tobaldi, B.F.O. Costa, M.P.F. Graça, M.A. Valente, J. Mater. Chem. C 4, 1066 (2016)

    Article  Google Scholar 

  34. 34.

    Y. Sun, H. Liu, H. Hao, S. Zhang, J. Am. Ceram. Soc. 99, 3067 (2016)

    Article  Google Scholar 

  35. 35.

    A. Ingale, K.C. Rustagi, Phys. Rev. B 58, 7197 (1998)

    Article  Google Scholar 

  36. 36.

    K.P. Jain, A.K. Shukla, R. Ashokan, S.C. Abbi, M. Balkanski, Phys. Rev. B 32, 6688 (1985)

    Article  Google Scholar 

  37. 37.

    J. Chen, W.Z. Shen, J. Appl. Phys. 99, 013513 (2006)

    Article  Google Scholar 

  38. 38.

    J.M. Wesselinowa, A.T. Apostolov, J. Appl. Phys. 108, 044316 (2010)

    Article  Google Scholar 

  39. 39.

    Y. Stubrov, A. Nikolenko, V. Strelchuk, S. Nedilko, V. Chornii, Nanoscale Res. Lett. 12, 297 (2017)

    Article  Google Scholar 

  40. 40.

    S. Mignuzzi, A.J. Pollard, N. Bonini, B. Brennan, I.S. Gilmore, M.A. Pimenta, D. Richards, D. Roy, Phys. Rev. B 91, 195411 (2015)

    Article  Google Scholar 

  41. 41.

    J. Huso, H. Che, D. Thapa, A. Canul, M.D. McCluskey, L. Bergman, J. Appl. Phys. 117, 125702 (2015)

    Article  Google Scholar 

  42. 42.

    S. Anwar, P.R. Sagdeo, N.P. Lalla, Mater. Res. Bull. 43, 1761 (2008)

    Article  Google Scholar 

  43. 43.

    A. Sati, A. Kumar, V. Mishra, K. Warshi, A. Sagdeo, S. Anwar, R. Kumar, P.R. Sagdeo, J. Mater. Sci. (2019). https://doi.org/10.1007/s10854-019-01128-z

    Google Scholar 

  44. 44.

    R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)

    Article  Google Scholar 

  45. 45.

    A. Kumar, M.K. Warshi, V. Mishra, S.K. Saxena, R. Kumar, P.R. Sagdeo, Appl. Phys. A 123, 576 (2017)

    Article  Google Scholar 

  46. 46.

    M.V. Kurik, Phys. Status Solidi Appl. Res. 8, 9 (1971)

    Article  Google Scholar 

  47. 47.

    I.A. Weinstein, A.F. Zatsepin, Phys. Status Solidi C 1, 2916 (2004)

    Article  Google Scholar 

  48. 48.

    H. Sumi, Y. Toyozawa, J. Phys. Soc. Jpn. 31, 342 (1971)

    Article  Google Scholar 

  49. 49.

    D.L. Dexter, Phys. Rev. Lett. 19, 1383 (1967)

    Article  Google Scholar 

  50. 50.

    A. Sagdeo, A. Nagwanshi, P. Pokhriyal, A.K. Sinha, P. Rajput, V. Mishra, P.R. Sagdeo, J. Appl. Phys. 123, 161424 (2018)

    Article  Google Scholar 

  51. 51.

    H. Mohan Rai, S.K. Saxena, V. Mishra, A. Sagdeo, P. Rajput, R. Kumar, P.R. Sagdeo, J. Mater. Chem. C 4, 10876 (2016)

    Article  Google Scholar 

  52. 52.

    V. Mishra, M.K. Warshi, A. Sati, A. Kumar, V. Mishra, A. Sagdeo, R. Kumar, P.R. Sagdeo, Mater. Sci. Semicond. Process. 86, 151 (2018)

    Article  Google Scholar 

  53. 53.

    V. Mishra, A. Sati, M.K. Warshi, A.B. Phatangare, S. Dhole, V.N. Bhoraskar, H. Ghosh, A. Sagdeo, V. Mishra, R. Kumar, P.R. Sagdeo, Mater. Res. Express 5, 036210 (2018)

    Article  Google Scholar 

  54. 54.

    V. Mishra, M.K. Warshi, R. Kumar, P.R. Sagdeo, J. Instrum. 13, T11003 (2018)

    Article  Google Scholar 

  55. 55.

    A. Kumar, M.K. Warshi, V. Mishra, A. Sati, S. Banik, A. Sagdeo, R. Kumar, P.R. Sagdeo, Ceram. Int. (2019). https://doi.org/10.1016/j.jpcs.2019.03.012

    Google Scholar 

  56. 56.

    A. Kumar, V. Mishra, M.K. Warshi, A. Sati, A. Sagdeo, R. Kumar, P.R. Sagdeo, J. Phys. Condens. Matter Inst. Phys. J. 5, 2 (2019). https://doi.org/10.1088/1361-648X/ab1195

    Google Scholar 

  57. 57.

    J. Rodríguez-Carvajal, Phys. B Condens. Matter 192, 55 (1993)

    Article  Google Scholar 

  58. 58.

    J.H. Nobbs, Rev. Prog. Color. Relat. Top. 15, 66 (1985)

    Article  Google Scholar 

  59. 59.

    P. Kubelka, J. Opt. Soc. Am. 38, 448 (1948)

    Article  Google Scholar 

  60. 60.

    K. Noba, Y. Kayanuma, Phys. Rev. B 60, 4418 (1999)

    Article  Google Scholar 

  61. 61.

    S.M. Wasim, C. Rincón, G. Marín, P. Bocaranda, E. Hernández, I. Bonalde, E. Medina, Phys. Rev. B 64, 195101 (2001)

    Article  Google Scholar 

  62. 62.

    M. Kranjčec, D.I. Desnica, B. Čelustka, G.S. Kovacs, I.P. Studenyak, Phys. Status Solidi A 144, 223 (1994)

    Article  Google Scholar 

  63. 63.

    Y. Toyozawa, Camb. Core (2003)

  64. 64.

    T. Arima, Y. Tokura, J.B. Torrance, Phys. Rev. B 48, 17006 (1993)

    Article  Google Scholar 

  65. 65.

    F. Moura, A.Z. Simões, L.S. Cavalcante, M.A. Zaghete, J.A. Varela, E. Longo, J. Alloys Compd. 466, L15 (2008)

    Article  Google Scholar 

  66. 66.

    M.-W. Chu, Y. Shingaya, T. Nakayama, Appl. Phys. A 86, 101 (2007)

    Article  Google Scholar 

  67. 67.

    A.R. Zanatta, I. Chambouleyron, Phys. Rev. B 53, 3833 (1996)

    Article  Google Scholar 

  68. 68.

    A.R. Zanatta, M. Mulato, I. Chambouleyron, J. Appl. Phys. 84, 5184 (1998)

    Article  Google Scholar 

  69. 69.

    M.I. Aroyo, A. Kirov, C. Capillas, J.M. Perez-Mato, H. Wondratschek, Acta Crystallogr. A 62, 115 (2006)

    Article  Google Scholar 

  70. 70.

    R. Comes, M. Lambert, A. Guinier, Solid State Commun. 6, 715 (1968)

    Article  Google Scholar 

  71. 71.

    A.C. Ferrari, J. Robertson, Phys. Rev. B 63, 121405 (2001)

    Article  Google Scholar 

  72. 72.

    A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)

    Article  Google Scholar 

  73. 73.

    H. Richter, Z.P. Wang, L. Ley, Solid State Commun. 39, 625 (1981)

    Article  Google Scholar 

  74. 74.

    D. Bersani, P.P. Lottici, X.-Z. Ding, Appl. Phys. Lett. 72, 73 (1998)

    Article  Google Scholar 

  75. 75.

    I.G. Siny, R.S. Katiyar, A.S. Bhalla, J. Raman Spectrosc. 29, 385 (1998)

    Article  Google Scholar 

  76. 76.

    K. Nakamura, M. Kitajima, Phys. Rev. B 45, 78 (1992)

    Article  Google Scholar 

  77. 77.

    M. Kitajima, Crit. Rev. Solid State Mater. Sci. 22, 275 (1997)

    Article  Google Scholar 

  78. 78.

    K. Nakamura, M. Kitajima, Appl. Phys. Lett. 59, 1550 (1991)

    Article  Google Scholar 

  79. 79.

    A. Kumar, V. Mishra, M.K. Warshi, A. Sati, A. Sagdeo, R. Kumar, P.R. Sagdeo, J. Phys. Chem. Solids 130, 230 (2019)

    Article  Google Scholar 

  80. 80.

    J.D. Carey, S.R. Silva, Phys. Rev. B 70, 233101 (2004)

    Article  Google Scholar 

  81. 81.

    J.M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, Oxford, 2001)

    Google Scholar 

  82. 82.

    S.F. Wu, P. Richard, X.B. Wang, C.S. Lian, S.M. Nie, J.T. Wang, N.L. Wang, H. Ding, Phys. Rev. B 90, 054519 (2014)

    Article  Google Scholar 

  83. 83.

    J. Zhang, Z. Peng, A. Soni, Y. Zhao, Y. Xiong, B. Peng, J. Wang, M.S. Dresselhaus, Q. Xiong, Nano Lett. 11, 2407 (2011)

    Article  Google Scholar 

  84. 84.

    V.G. Sathe, S. Tyagi, G. Sharma, J. Phys 755, 012008 (2016)

    Google Scholar 

  85. 85.

    P. Yogi, S.K. Saxena, S. Mishra, H.M. Rai, R. Late, V. Kumar, B. Joshi, P.R. Sagdeo, R. Kumar, Solid State Commun. 230, 25 (2016)

    Article  Google Scholar 

  86. 86.

    A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010)

    Article  Google Scholar 

  87. 87.

    A. Kumar, S. Chaudhary, D.K. Pandya, S.K. Sharma, Phys. Rev. B 90, 024302 (2014)

    Article  Google Scholar 

  88. 88.

    U. Fano, Phys. Rev. 124, 1866 (1961)

    Article  Google Scholar 

  89. 89.

    P. Yogi, S. Mishra, S.K. Saxena, V. Kumar, R. Kumar, J. Phys. Chem. Lett. 7, 5291 (2016)

    Article  Google Scholar 

  90. 90.

    I. Childres, L.A. Jauregui, Y.P. Chen, J. Appl. Phys. 116, 233101 (2014)

    Article  Google Scholar 

  91. 91.

    H.F. Liu, N. Xiang, S. Tripathy, S.J. Chua, J. Appl. Phys. 99, 103503 (2006)

    Article  Google Scholar 

  92. 92.

    A. Sergeev, M.Y. Reizer, V. Mitin, Phys. Rev. Lett. 94, 136602 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank DST-FIST (SR/FST/PSI-225/2016) for providing funding for Raman spectrometer. SIC IIT Indore is acknowledged for providing some of the experimental facilities. We sincerely thank the Raja Ramanna Center for Advanced Technology (RRCAT) Indore for providing synchrotron radiation facilities. The authors sincerely thank Dr A. K. Sinha, Mr. M. N. Singh and Mr. Anuj Upadhyay for their help during X-ray diffraction measurements. Ms. Aanchal Sati acknowledges CSIR New Delhi for providing Junior Research fellowship through grant No. 1061651837 and IIT Indore for providing an opportunity to peruse research through Ph.D. program. Authors AK, KW, VM sincerely thank IIT Indore for financial support through teaching assistantship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. R. Sagdeo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sati, A., Mishra, V., Kumar, A. et al. Effect of structural disorder on the electronic and phononic properties of Hf doped BaTiO3. J Mater Sci: Mater Electron 30, 9498–9506 (2019). https://doi.org/10.1007/s10854-019-01281-5

Download citation