Electrochemical synthesis of p-Cu2O/n-ZnO heterojuncion for enhanced piezoelectric nanogenerators

  • Yang Nie
  • Yu QiuEmail author
  • Dechao Yang
  • Xiaotong Zhang
  • Lizhong Hu


The output performance of ZnO piezoelectric nanogenerators (NGs) has been limited because of the potential screening of large excess intrinsic electron carriers in ZnO. In this study, a simple and effective approach was demonstrated to fabricated piezoelectric nanogenerators (NGs) with higher output performance by constructing a p-Cu2O/n-ZnO heterojunction. The p–n heterostructure formed by adding Cu2O layer on ZnO, effectively reduced potential screening from intrinsic free electron carriers of ZnO. Using this approach, we obtained a maximum of output current up to 900 nA, which was a 30-fold higher output current compared with ZnO NG without a Cu2O layer. These results indicate a compatible strategy for realizing a high-performance piezoelectric harvesting devices.



This work was supported by the NSFC (Project No. 61504018), Support high-level innovative entrepreneurial talent project in Dalian (2015R094), the National Natural Science Foundation of China (51872036), Dalian science and technology innovation fund (2018J12GX033), and Foundation of Key laboratory for Micro/Nano Technology and System of Liaoning Province (20140405).


  1. 1.
    S. Bilgen, S. Keleş, A. Kaygusuz, A. Sarı, K. Kaygusuz, Global warming and renewable energy sources for sustainable development. Renew. Sustain. Energy Rev. 12(2), 372–396 (2008)CrossRefGoogle Scholar
  2. 2.
    Y. Yang, K.C. Pradel, Q. Jing, J.M. Wu, F. Zhang, Y. Zhou, Y. Zhang, Z.L. Wang, Thermoelectric nanogenerators based on single Sb-doped ZnO micro/nanobelts. ACS Nano 6(8), 6984–6989 (2012)CrossRefGoogle Scholar
  3. 3.
    Q.L. Song, H.B. Yang, Y. Gan, C. Gong, C.L. Ming, Evidence of harvesting electricity by exciton recombination in an n–n type solar cell. J. Am. Chem. Soc. 132(13), 4554–4555 (2010)CrossRefGoogle Scholar
  4. 4.
    L. Zhang, B. Zhang, J. Chen, L. Jin, W. Deng, J. Tang, H. Zhang, H. Pan, M. Zhu, W. Yang, Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv. Mater. 28(8), 1650–1656 (2016)CrossRefGoogle Scholar
  5. 5.
    Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)CrossRefGoogle Scholar
  6. 6.
    Y.F. Lin, J. Song, Y. Ding, S.Y. Lu, Z.L. Wang, Piezoelectric nanogenerator using CdS nanowires. Appl. Phys. Lett. 92(2), 022105-022105-022103 (2008)Google Scholar
  7. 7.
    X. Wang, Piezoelectric nanogenerators—harvesting ambient mechanical energy at the nanometer scale. Nano Energy 1(1), 13–24 (2012)CrossRefGoogle Scholar
  8. 8.
    J.H. Jung, M. Lee, J.I. Hong, Y. Ding, C.Y. Chen, L.J. Chou, Z.L. Wang, Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator. ACS Nano 5(12), 10041–10046 (2011)CrossRefGoogle Scholar
  9. 9.
    A.S. Dahiya, F. Morini, S. Boubenia, K. Nadaud, D. Alquier, G. Poulin-Vittrant, Organic/inorganic hybrid stretchable piezoelectric nanogenerators for self-powered wearable electronics. Adv. Mater. Technol. 3, 1700249 (2017)CrossRefGoogle Scholar
  10. 10.
    Y. Jing, Y.G. Jeong, High performance flexible piezoelectric nanogenerators based on BaTiO3 nanofibers in different alignment modes. ACS Appl. Mater. Interfaces 8(24), 15700–15709 (2016)CrossRefGoogle Scholar
  11. 11.
    M.A. Johar, A. Waseem, M.A. Hassan, J.H. Kang, S.W. Ryu, A scalable, flexible and transparent gan based heterojunction piezoelectric nanogenerator for energy harvesting. Appl. Energy 222, 781–789 (2018)CrossRefGoogle Scholar
  12. 12.
    Z.L. Wang, From nanogenerators to piezotronics—A decade-long study of ZnO nanostructures. MRS Bull. 37(9), 814–827 (2012)CrossRefGoogle Scholar
  13. 13.
    Y.H. Ko, S.H. Lee, J.S. Yu, Performance enhanced piezoelectric ZnO nanogenerators with highly rough Au electrode surfaces on ZnO submicrorod arrays. Appl. Phys. Lett. 103(2), 532 (2013)Google Scholar
  14. 14.
    B. Gmhu, I.K. Park, Flexible ZnO nanorod-based piezoelectric nanogenerators on carbon papers. Nanotechnology 28, 44502 (2017)Google Scholar
  15. 15.
    X. Wang, J. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821), 102 (2007)CrossRefGoogle Scholar
  16. 16.
    D. Yang, Y. Qiu, T. Wang, W. Song, Z. Wang, J. Xu, Q. Feng, Y. Zong, X. Sun, Growth of 3D branched ZnO nanowire for DC-type piezoelectric nanogenerators. J. Mater. Sci. Mater. Electr. 27(7), 1–5 (2016)Google Scholar
  17. 17.
    D. Yang, Y. Qiu, Q. Jiang, Z. Guo, W. Song, J. Xu, Y. Zong, Q. Feng, X. Sun, Patterned growth of ZnO nanowires on flexible substrates for enhanced performance of flexible piezoelectric nanogenerators. Appl. Phys. Lett. 110(6), 901 (2017)CrossRefGoogle Scholar
  18. 18.
    J. Briscoe, M. Stewart, M. Vopson, M. Cain, P.M. Weaver, S. Dunn, Nanostructured p–n junctions for kinetic-to-electrical energy conversion. Adv. Energy Mater. 2(10), 1261–1268 (2012)CrossRefGoogle Scholar
  19. 19.
    G. Liu, E. Abdelrahman, D. Ban, Performance optimization of p–n homojunction nanowire-based piezoelectric nanogenerators through control of doping concentration. J. Appl. Phys. 22(9), 366 (2015)Google Scholar
  20. 20.
    X. Xue, Y. Nie, B. He, L. Xing, Y. Zhang, Z.L. Wang, Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor. Nanotechnology 24(22), 225501 (2013)CrossRefGoogle Scholar
  21. 21.
    N. Jalali, P. Woolliams, M. Stewart, P.M. Weaver, M.G. Cain, S. Dunn, J. Briscoe, Improved performance of p–n junction-based ZnO nanogenerators through CuSCN-passivation of ZnO nanorods. J. Mater. Chem. A 2(28), 10945–10951 (2014)CrossRefGoogle Scholar
  22. 22.
    H.K. Yang, D.H. Kim, H.K. Kim, J. Nah, Phosphorus-doped zinc oxide p–n homojunction thin film for flexible piezoelectric nanogenerators. Nano Energy 18, 126–132 (2015)CrossRefGoogle Scholar
  23. 23.
    Z. Shao, X. Li, Direct-current piezoelectric nanogenerator based on p-Si/n-ZnO heterojunction. Physica E 77, 44–47 (2016)CrossRefGoogle Scholar
  24. 24.
    K.Y. Lee, B. Kumar, J.S. Seo, K.H. Kim, J.I. Sohn, S.N. Cha, D. Choi, Z.L. Wang, S.W. Kim, p-Type polymer-hybridized high-performance piezoelectric nanogenerators. Nano Lett. 12(4), 1959 (2012)CrossRefGoogle Scholar
  25. 25.
    S.H. Shin, H.L. Min, J.Y. Jung, J.H. Seol, J. Nah, Piezoelectric performance enhancement of ZnO flexible nanogenerator by a CuO–ZnO p–n junction formation. J. Mater. Chem. C 1(48), 8103–8107 (2013)CrossRefGoogle Scholar
  26. 26.
    H. Lahmar, A. Azizi, G. Schmerber, A. Dinia, Effect of the thickness of the ZnO buffer layer on the properties of electrodeposited p-Cu2O/n-ZnO/n-AZO heterojunctions. RSC Adv. 6(73), 68663 (2016)CrossRefGoogle Scholar
  27. 27.
    J. Lei, B. Yin, Y. Qiu, H. Zhang, Y. Chang, Y. Luo, Y. Zhao, J. Ji, L. Hu, Fabrication of flexible nanogenerator with enhanced performance based on p-CuO/n-ZnO heterostructure. J. Mater. Sci. Mater. Electr. 27(2), 1983–1987 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PhysicsDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.Department of Electronic EngineeringDalian Neusoft University of InformationDalianPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringDalian University of TechnologyDalianPeople’s Republic of China
  4. 4.The Key Laboratory for Micro/Nano Technology and System of Liaoning ProvinceDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations