Skip to main content
Log in

A novel method for source/drain ion implantation for 20 nm FinFETs and beyond

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper presents a method to improve source/drain extension (SDE) ion implantation (I/I) process for sub-20 nm node FinFETs with no extra step in transistor process. Traditionally, SDE I/I process needs a large implant tilt angle and a high dose to obtain a heavy and conformal doping. However, this process leads to implantation shadow effects and Si-fin amorphization. These drawbacks can be removed in our new approach when SDE I/I is modified and moved after S/D epitaxy process (SDE I/I-last). Because of the facet planes of the SiGe layer, the ions are allowed to be implanted with small tilt. This is helpful to avoid shadow effects of implantation and to keep the low defect density in the S/D. As a result, the external resistance (REXTRNL) is not high and the strain relaxation is minor in S/D epitaxy layer. Finally, p-type FinFETs with 25 nm gate length with SDE I/I-last are fabricated. These new FinFETs demonstrate ~ 50% on-state current (ION) improvement compared to those transistors fabricated by traditional method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Matsukawa, K. Endo, Y. Ishikawa, H. Yamauchi, S. O’uchi, Y. Liu, J. Tsukada, K. Ishii, K. Sakamoto, E. Suzuki, M. Masahara, Fluctuation analysis of parasitic resistance in FinFETs with scaled fin thickness. IEEE Electron Device Lett. 30(4), 407–409 (2009). https://doi.org/10.1109/led.2009.2014180

    Article  Google Scholar 

  2. G.L. Wang, M. Moeen, A. Abedin, M. Kolahdouz, J. Luo, C.L. Qin, H.L. Zhu, J. Yan, H.Z. Yin, J.F. Li, C. Zhao, H.H. Radamson, Optimization of SiGe selective epitaxy for source/drain engineering in 22 nm node complementary metal-oxide semiconductor (CMOS). J. Appl. Phys. 114(12), 123511 (2013)

    Article  Google Scholar 

  3. H.H. Radamson, L. Thylen, Monolithic Nanoscale Photonics-Electronics Integration in Silicon and Other Group 1 V Elements (Elsevier, Amsterdam, 2014)

    Google Scholar 

  4. G.L. Wang, A. Abedin, M. Moeen, M. Kolahdouz, J. Luo, Y. Guo, T. Chen, H. Yin, H. Zhu, J. Li, C. Hao, H.H. Radamson, Integration of highly-strained SiGe materials in 14 nm and beyond nodes FinFET technology. Solid-State Electron. 103, 222–228 (2015)

    Article  CAS  Google Scholar 

  5. Henry H. Radamson, E. Simoen, J. Luo, CMOS past, present and future [M] (Woodhead Publishing, Sawston, 2018)

    Google Scholar 

  6. J. Mody, A.K. Kambham, G. Zschatzsch, P. Schatzer, T. Chiarella, N. Collaert, L. Witters, M. Jurczak, N. Horiguchi, M. Gilbert, P. Eyben, S Kolling, A. Schulze, T-Y. Hoffmann, W. Vandervorst, Dopant and carrier profiling in FinFET-based devices with sub-nanometer resolution, in Proc. IEEE VLSIT, June 2010, pp. 407–409. https://doi.org/10.1109/vlsit.2010.5556225

  7. G. Zschatzsch, Y. Sasaki, S. Hayashi, M. Togo, T. Chiarella, A. K. Kambham, J. Mody, B. Douhard, N. Horiguchi, B. Mizuno, M. Ogura, W. Vandervorst, High performance n-MOS finFET by damage-free, conformal extension doping, in Proc. IEEE IEDM., Dec. 2011, pp. 841–844

  8. L. Pelaz, L. Marques, M. Aboy, P. Lopez, I. Santos, R. Duffy, Atomistic process modeling based on Kinetic Monte Carlo and Molecular Dynamics for optimization of advanced devices, in Proc. IEEE IEDM., Dec. 2009, pp. 513–516. https://doi.org/10.1109/iedm.2009.5424309

  9. Pelaz, R. Duffy, M. Aboy, L. Marques, P. Lopez, I. Santos, B. J. Pawlak, M. J. H. van Dal, B. Duriez, T. Merelle, G. Doornbos, N. Collaert, L. Witters, R. Rooyackers, W. Vandervorst, M. Jurczak, M. Kaiser, R. G. R. Weemaes, J. G. M. van Berkum, P. Breimer, R. J. P. Lander, Atomistic modeling of impurity ion implantation in ultra-thin-body Si devices, in Proc. IEEE IEDM, Dec 2008, pp. 1–4. https://doi.org/10.1109/iedm.2008.4796744

  10. R. Duffy, G. Curatola, B.J. Pawlak, G. Doornbos, K. van der Tak, P. Breimer, J.G.M. van Berkum, F. Roozeboom, Doping fin field-effect transistor sidewalls: impurity dose retention in silicon due to high angle incident ion implants and the impact on device performance. J. Vac. Sci. Technol., B 26(1), 402–407 (2008). https://doi.org/10.1116/1.2816925

    Article  CAS  Google Scholar 

  11. H. Kawasaki, M. Khater, M. Guillorn, N. Fuller, J. Chang, S. Kanakasabapathy, L. Chang, R. Muralidhar, K. Babich, Q. Yang, J. Ott, D. Klaus, E. Kratschmer, E. Sikorski, R. Miller, R. Viswanathan, Y. Zhang, J. Silverman, Q. Ouyang, A. Yagishita, M. Takayanagi, W. Haensch, K. Ishimaru, Demonstration of highly scaled FinFET SRAM Cells with High-K/metal gate and investigation of characteristic Variability for the 32 nm node and beyond, in Proc. IEEE IEDM, Dec 2008, pp. 237–240. https://doi.org/10.1109/iedm.2008.4796661

  12. Y. Sasaki, L. Godet, T. Chiarella, D. P. Brunco, T. Rockwell, J. W. Lee, B. Colombeau, M. Togo, S. A. Chew, G. Zschaetszch, K. B. Noh, A. De Keersgieter, G. Boccardi, M. S. Kim, G. Hellings, P. Martin, W. Vandervorst, A. Thean, N. Horiguchi, Improved sidewall doping of extensions by AsH3 ion assisted deposition and doping (IADD) with small implant angle for scaled NMOS Si bulk FinFETs, in Proc. IEEE IEDM, Dec 2013, pp. 542–545. https://doi.org/10.1109/iedm.2013.6724671

  13. H. Onoda, Y. Nakashima, T. Nagayama, S. Sakai, High dose dopant implantation to heated si substrate without amorphous layer formation, in Proc. IEEE IWJT, June 2013, pp. 66–69. https://doi.org/10.1109/iwjt.2013.6644507

  14. R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, A.R. LeBlanc, Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid State Circ. 9(5), 256–268 (1974). https://doi.org/10.1109/jssc.1974.1050511

    Article  Google Scholar 

  15. L. Pelaz, L. Marques, I. Santos, P. Lopez, M. Aboy, Modeling of advanced Ion implantation technologies in semiconductors, in Proc. IEEE IWJT, June 2011, pp. 34–39. https://doi.org/10.1109/iwjt.2011.5969995

  16. J.-W. Han, J. Lee, D. Park, Y.-K. Choi, Body thickness dependence of impact ionization in a multiple-gate FinFET. IEEE Electron Device Lett. 28(7), 625–627 (2007). https://doi.org/10.1109/led.2007.898284

    Article  CAS  Google Scholar 

  17. G.K. Reeves, H.B. Harrison, Obtaining the specific contact resistance from transmission line model measurements. IEEE Electron Device Lett. 3(5), 111–113 (1982). https://doi.org/10.1109/edl.1982.25502

    Article  Google Scholar 

  18. C. Chang, T. Lee, C. Wann, L. Lai, H. Chen, C. Yeh, C. Chang, C. Ho, J. Sheu, T. Kwok, F. Yuan, S. Yu, C. Hu, J. Shen, Y. Liu, C. Chen, S. Chen, L. Chen, L. Chen, Y. Chiu, C. Fu, M. Huang, Y. Huang, S. Hung, J. Liaw, H. Lin, H. Lin, L. Lin, S. Lin, Y. Mii, E. Ou-Yang, M. Shieh, C. Su, Shih-Peng Tai, H. Tao, M. Tsai, K. Tseng, K. Wang, S. Wang, Jeff J. Xu, F. Yang, S. Yang, C. Yeh, A 25-nm gate-length FinFET transistor module for 32 nm Node, in Proc. IEEE IEDM, Dec 2009, pp. 293–296. https://doi.org/10.1109/iedm.2009.5424367

  19. T.-K. Kang, Evidence for silicon bandgap narrowing in uniaxially strained MOSFETs subjected to tensile and compressive stress. IEEE Electron Device Lett. 33(6), 770–772 (2012). https://doi.org/10.1109/led.2012.2191759

    Article  CAS  Google Scholar 

  20. M. Furuhashi, K. Taniguchi, Additional stress-induced band gap narrowing in a silicon die. J. Appl. Phys. 103(2), 026103-1-026103-3 (2008). https://doi.org/10.1063/1.2833435

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2016YFA0301701), and the Youth Innovation Promotion Association of CAS under Grant No 2016112, which are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huaxiang Yin or Guilei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, C., Yin, H., Wang, G. et al. A novel method for source/drain ion implantation for 20 nm FinFETs and beyond. J Mater Sci: Mater Electron 31, 98–104 (2020). https://doi.org/10.1007/s10854-019-01274-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01274-4

Navigation