Synthesis of AgI/2D-La2Ti2O7 hybrids as a visible light photocatalyst for degradation of rhodamine B

  • Yan-Mei Feng
  • Xiang-Feng WuEmail author
  • Zhi-Qiang Wang
  • Yun-Feng YangEmail author
  • Jun-Zhang Su
  • Jia-Rui Zhang
  • Yun-Ning Jia
  • Mi Zhang
  • Xiu-Guo Sun


The AgI/2D-La2Ti2O7 hybrids were obtained via a facile method at room temperature. Rhodamine B, as an organic dye, was used to determine the photocatalytic activity of the samples. The photocatalytic degradation mechanism was also analyzed. Experimental results display that AgI can broaden the light absorption of La2Ti2O7 under the visible light irradiation. The photocatalytic degradation efficiency of the as-synthesized hybrids appears the tendency of first increasing and then decreasing with increasing the usage of La2Ti2O7. When the usage of La2Ti2O7 is 10%, within 60 min, the as-synthesized hybrids possess the maximum of 93.1%. This is higher than 2.1% of La2Ti2O7 and 80.9% of AgI. Moreover, the improved photocatalytic activity can be attributed to AgI particles conjugating with 2D-La2Ti2O7 nanosheets via chemical-bonds, which can enhance the separation and transformation of the photo-generated holes and electrons. In addition, the dominating role is superoxide radicals during the photocatalytic process.



This work was supported by the Natural Science Foundation of Hebei Province, China (B2016210111).

Compliance with ethical standards

Conflict of interest

The authors state that they have no conflict of interest.


  1. 1.
    X.F. Wu, H. Li, J.Z. Su, J.R. Zhang, Y.M. Feng, Y.N. Jia, L.S. Sun, W.G. Zhang, M. Zhang, C.Y. Zhang, Appl. Surf. Sci. 473, 992–1001 (2019)Google Scholar
  2. 2.
    B. Farshad, Z.A. Sahar, B. Samira, S.N. Masoud, Plos One (2017). Google Scholar
  3. 3.
    Z.A. Sahar, S.N. Masoud, J. Mol. Liq. 243, 219–226 (2017)CrossRefGoogle Scholar
  4. 4.
    X.F. Wu, Y. Sun, H. Li, Y.J. Wang, C.X. Zhang, J.R. Zhang, J.Z. Su, Y.W. Wang, Y. Zhang, C. Wang, M. Zhang, J. Alloy. Compd. 740, 1197–1203 (2018)CrossRefGoogle Scholar
  5. 5.
    Z.A. Sahar, S.N. Masoud, S. Azam, Z.A. Zahra, J. Alloy. Compd. 767, 1164–1185 (2018)CrossRefGoogle Scholar
  6. 6.
    C.X. Zheng, H. Yang, J. Mater. Sci.-Mater. El. 29, 9291–9300 (2018)CrossRefGoogle Scholar
  7. 7.
    H.L. Jiang, X.Q. Li, L. Tian, T. Wang, Q. Wang, P.P. Niu, P.H. Chen, X.B. Luo, Sci. Total Environ. 648, 1342–1353 (2019)CrossRefGoogle Scholar
  8. 8.
    M. Zhou, Z.H. Liu, Q.G. Song, X.F. Li, B.W. Chen, Z.F. Liu, Appl. Catal. B-Environ. 244, 188–196 (2019)CrossRefGoogle Scholar
  9. 9.
    Z.A. Sahar, M.D. Sobhan, S.N. Masoud, J. Mol. Liq. 231, 306–313 (2017)CrossRefGoogle Scholar
  10. 10.
    T. Chen, R.H. Liang, Y.C. Li, Z.Y. Zhou, X.L. Dong, J. Am. Ceram. Soc. 100, 2397–2401 (2017)CrossRefGoogle Scholar
  11. 11.
    Z.L. Hua, X.Y. Zhang, X. Bai, L.L. Lv, Z.Y. Ye, X. Huang, J. Colloid Interf. Sci. 450, 45–53 (2015)CrossRefGoogle Scholar
  12. 12.
    Z.A. Sahar, S. Azam, S.N. Masoud, J. Clean. Prod. 192, 678–687 (2018)CrossRefGoogle Scholar
  13. 13.
    X.X. Zhao, H. Yang, S.H. Li, Z.Z. Cui, C.R. Zhang, Mater. Res. Bull. 107, 180–188 (2018)CrossRefGoogle Scholar
  14. 14.
    Z.A. Sahar, M.D. Sobhan, S.N. Masoud, Int. J. Hydrog. Energ. 42, 15178–15188 (2017)CrossRefGoogle Scholar
  15. 15.
    Z.A. Sahar, S. Zahra, S.N. Masoud, J. Clean. Prod. 215, 480–487 (2019)CrossRefGoogle Scholar
  16. 16.
    X.F. Wu, C.X. Zhang, Y.D. Wang, J.Z. Su, J.R. Zhang, Y.M. Feng, M. Zhang, X. Tong, W.G. Zhang, X.G. Sun, J. Mater. Sci.-Mater. El. 29, 20959–20967 (2018)CrossRefGoogle Scholar
  17. 17.
    M.S. Zhu, X.Y. Cai, M. Fujitsuka, J.Y. Zhang, T. Majima, Angew. Chem. Int. Edit. 56, 2064–2068 (2017)CrossRefGoogle Scholar
  18. 18.
    X.Y. Cai, L. Mao, J.Y. Zhang, M.S. Zhu, M. Fujitsukab, T. Majima, J. Mater. Chem. A 5, 10442–10449 (2017)CrossRefGoogle Scholar
  19. 19.
    S. Wan, F. Qi, W.Y. Jin, X.X. Guo, H. Liu, J.L. Zhao, J. Zhang, C.C. Tang, J. Alloy. Compd. 740, 901–909 (2018)CrossRefGoogle Scholar
  20. 20.
    Y.H. Shi, Y.J. Chen, G.H. Tian, L.Y. Wang, Y.T. Xiao, H.G. Fu, ChemCatChem 7, 1684–1690 (2015)CrossRefGoogle Scholar
  21. 21.
    H.B. Yu, B.B. Huang, H. Wang, X.Z. Yuan, L.B. Jiang, Z.B. Wu, J. Zhang, G.M. Zeng, J. Colloid Interf. Sci. 522, 82–94 (2018)CrossRefGoogle Scholar
  22. 22.
    L. Wang, P. Wang, B.B. Huang, X.J. Ma, G. Wang, Y. Dai, X.Y. Zhang, X.Y. Qin, Appl. Surf. Sci. 391, 557–564 (2017)CrossRefGoogle Scholar
  23. 23.
    H. Li, X.F. Wu, Y. Sun, Z.H. Zhao, C.X. Zhang, F.F. Jia, H. Zhang, M.T. Yu, X.Y. Yang, J. Nanosci. Nanotechno. 18, 999–1005 (2018)CrossRefGoogle Scholar
  24. 24.
    Y. Tan, Z.B. Li, Y.F. Tian, S.J. Hu, L.C. Jia, B. Chi, J. Pu, J. Li, J. Alloy. Compd. 709, 277–284 (2017)CrossRefGoogle Scholar
  25. 25.
    S.A. Shirin, H.Y. Aziz, Mat. Sci. Semicon. Proc. 44, 48–56 (2016)CrossRefGoogle Scholar
  26. 26.
    Z.A. Sahar, M.D. Sobhan, S.N. Masoud, Ultrason. Sonochem. 42, 171–182 (2018)CrossRefGoogle Scholar
  27. 27.
    Y.M. Feng, Z.Q. Wang, Y.F. Yang, X.F. Wu, X.D. Gong, Y.J. Liu, Y.F. Li, Z.L. Cao, C. Wang, X. Tong, Nano (2018). Google Scholar
  28. 28.
    Y. Ao, K. Wang, P.F. Wang, C. Wang, J. Hou, Appl. Catal. B-Environ. 194, 157–168 (2016)CrossRefGoogle Scholar
  29. 29.
    Z.A. Sahar, S.M. Maryam, S.N. Masoud, J. Environ. Manage. 233, 107–119 (2019)CrossRefGoogle Scholar
  30. 30.
    Y.X. Yan, H. Yang, X.X. Zhao, R.S. Li, X.X. Wang, Mater. Res. Bull. 105, 286–290 (2018)CrossRefGoogle Scholar
  31. 31.
    Y.C. Ye, H. Yang, H.M. Zhang, J.L. Jiang, Environ. Technol. (2018). Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering MaterialsShijiazhuang Tiedao UniversityShijiazhuangChina
  2. 2.School of ScienceNorth University of ChinaTaiyuanChina
  3. 3.School of Materials Science and EngineeringNorth University of ChinaTaiyuanChina

Personalised recommendations