Effect of surface modification on photocatalytic activity of self-assembled LaFeO3 microspheres

  • Seyedeh Faezeh Hashemi Karouei
  • Hossain Milani MoghaddamEmail author


In this study, we have successfully synthesized self-assembled LaFeO3 (LFO) microsphere photocatalysts by hydrothermal method at two different temperatures in order to study the surface-morphology modification and photocatalytic activity. The self-assembled LFO microspheres have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, thermogravimetric analysis, high-resolution transmission electron microscopy, UV–Vis spectroscopy, field emission scanning electron microscopy, Brunauer–Emmett–Teller analysis and photoluminescence spectroscopy. The results show that the surface-morphology modification of self-assembled microspheres has a significant effect on the degradation of methylene blue under sunlight irradiation. The enhancement of photocatalytic activity of LFO microspheres composed of nanorods was attributed to their high specific surface area (15.06 m2g−1), low tensile strain and high charge separation efficiency as evidenced by PL spectrum. The surface roughness has increased from 23.96 to 61.36 nm after surface modification from nanoparticle to nanorod in the self-assembled microspheres, respectively. The great durability and stability of photocatalyst were sustained over three cycles, indicating this structure has a potential application in wastewater treatment.



This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.


  1. 1.
    A. Aghamali, M. Khosravi, H. Hamishehkar, N. Modirshahla, M.A. Behnajady, Mater. Sci. Semicond. Process. 87, 142 (2018)CrossRefGoogle Scholar
  2. 2.
    X. Wu, C. Liu, X. Li, X. Zhang, C. Wang, Y. Liu, Mater. Sci. Semicond. Process. 32, 76 (2015)CrossRefGoogle Scholar
  3. 3.
    S.K. Rashmi, H.S. Bhojya Naik, H. Jayadevappa, R. Viswanath, S.B. Patil, M. Madhukara Naik, Mater. Sci. Eng. B 225, 86 (2017)CrossRefGoogle Scholar
  4. 4.
    J. Chung Sin, S. Mun Lam, I. Satoshi, K. Teong Lee, A.R. Mohamed, Appl. Catal. B 148–149, 258 (2014)Google Scholar
  5. 5.
    P. Kanhere, Z. Chen, Molecules 19, 19995 (2014)CrossRefGoogle Scholar
  6. 6.
    R. Koferstein, L. Jager, S.G. Ebbinghaus, Solid State Ion. 249–250, 1 (2013)CrossRefGoogle Scholar
  7. 7.
    P. Tang, M. Fu, H. Chen, F. Cao, Mater. Sci. Forum 694, 150 (2011)CrossRefGoogle Scholar
  8. 8.
    Y. Janbutrach, S. Hunpratub, E. Swatsitang, Nanoscale Res. Lett. 9(1), 498 (2014)CrossRefGoogle Scholar
  9. 9.
    Y. Qiu, Y.S. Luo, Z.J. Zou, Z.M. Tian, S.L. Yuan, Y. Xi, L.Z. Huang, J. Mater. Sci.: Mater. Electron. 25, 760 (2014)Google Scholar
  10. 10.
    S. Thirumalairajan, K. Girija, V.R. Mastelaro, N. Ponpandian, New J. Chem. 38, 5480 (2014)CrossRefGoogle Scholar
  11. 11.
    K.M. Parida, K.H. Reddy, S. Martha, D.P. Das, N. Biswal, Int. J. Hydrog. Energy 35, 12161 (2010)CrossRefGoogle Scholar
  12. 12.
    S. Thirumalairajan, K. Girija, N.Y. Hebalkar, D. Mangalaraj, C. Viswanathan, N. Ponpandian, RSC Adv. 3, 7549 (2013)CrossRefGoogle Scholar
  13. 13.
    R. Dhinesh Kumar, R. Jayavel, J. Mater. Sci.: Mater. Electron. 25, 3953 (2014)Google Scholar
  14. 14.
    S.A. Hejazi Juybari, H. Milani Moghaddam, Appl. Surf. Sci. 457, 179 (2018)CrossRefGoogle Scholar
  15. 15.
    A. Kajbafvala, H. Ghorbani, A. Paravar, J.P. Samberg, E. Kajbafvala, S.K. Sadrnezhaad, Superlattices Microstruct. 51, 512 (2012)CrossRefGoogle Scholar
  16. 16.
    J. Wen, X. Li, W. Liu, Y. Fang, J. Xie, Y. Xu, Chinese. J. Catal. 36, 2049 (2015)Google Scholar
  17. 17.
    J.F. Li, G.Z. Lu, Y.Q. Wang, Y. Guo, Y.L. Guo, J. Colloid Interface Sci. 377, 191 (2012)CrossRefGoogle Scholar
  18. 18.
    J.L. Hu, H.S. Qian, Y. Hu, Z.Q. Li, G.X. Tong, T.K. Ying, P.J. Gong, S.Y. Hao, H.B. Zhang, L.C. Li, Cryst. Eng. Commun. 14, 7118 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Wang, P. Kuang, B. Cheng, J. Yu, C. Jiang, J. Alloys Compd. 741, 622 (2018)CrossRefGoogle Scholar
  20. 20.
    J.Q. Li, D.F. Wang, H. Liu, J. Du, Z.F. Zhu, Phys. Status Solidi A 209, 248 (2012)CrossRefGoogle Scholar
  21. 21.
    J. He, W. Wang, F. Long, Z. Zou, Z. Fu, Z. Xu, Mater. Sci. Eng. B 177, 967 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Ge, Y. Li, L. Liu, Z. Zhou, W. Chen, J. Phys. Chem. C 115, 5220 (2011)CrossRefGoogle Scholar
  23. 23.
    S. Shi, T. Goto, S.H. Cho, T. Sekino, J. Ceram. Soc. Jpn. 126, 877 (2018)CrossRefGoogle Scholar
  24. 24.
    C. Zhang, H. Zhang, K. Zhang, X. Li, Q. Leng, C. Hu, Appl. Mater. Interfaces 6, 14423 (2014)CrossRefGoogle Scholar
  25. 25.
    T.K. Le, D. Flahaut, H. Martinez, H. K. Hung. Appl. Catal. B 165, 260 (2015)CrossRefGoogle Scholar
  26. 26.
    H. Hou, F. Gao, L. Wang, M. Shang, Z. Yang, J. Zheng, W. Yang, J. Mater. Chem. A 4, 6276 (2016)CrossRefGoogle Scholar
  27. 27.
    H. Hou, M.H. Shang, F. Gao, L. Wang, Q. Liu, J. Zheng, Z. Yang, W. Yang, ACS Appl. Mater. Interfaces 8, 20128 (2016)CrossRefGoogle Scholar
  28. 28.
    K. Song, Z. Ma, W. Yang, H. Hou, F. Gao, J. Mater. Sci.: Mater. Electron. 29, 8338 (2018)Google Scholar
  29. 29.
    H. Hou, L. Wang, F. Gao, G. Wei, B. Tang, W. Yang, T. Wu, J. Am. Chem. Soc. 136, 16716 (2014)CrossRefGoogle Scholar
  30. 30.
    A. Kar, S. Kundu, A. Patra, J. Phys. Chem. C 115, 118 (2011)CrossRefGoogle Scholar
  31. 31.
    H. Feng, Z. Xu, L. Wang, Y. Yu, D.R.G. Mitchell, D. Cui, X. Xu, J. Shi, T. Sannomiya, Y. Du, W. Hao, S. Dou, Appl. Mater. Interface 50, 27592 (2015)CrossRefGoogle Scholar
  32. 32.
    X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, Mater. Chem. Phys. 78, 25 (2002)CrossRefGoogle Scholar
  33. 33.
    S. Thirumalairajan, K. Girija, V. Ganesh, D. Mangalaraj, C. Viswanathan, N. Ponpandian, Cryst. Growth Des. 13, 291 (2013)CrossRefGoogle Scholar
  34. 34.
    Z.X. Wei, Y.Q. Xu, H.Y. Liu, C.W. Hu, J. Hazard. Mater. 165, 1056 (2009)CrossRefGoogle Scholar
  35. 35.
    N. Ghobadi, Int. Nano Lett. 3, 1 (2013)CrossRefGoogle Scholar
  36. 36.
    Y. Ye, H. Yang, R. Li, X. Wang, J. Sol-Gel. Sci. Technol. 89, 509 (2017)CrossRefGoogle Scholar
  37. 37.
    S. Thirumalairajan, K. Girija, I. Ganesh, D. Mangalaraj, C. Viswanathan, A. Balamurugan, N. Ponpandian, Chem. Eng. J. 209, 420 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Seyedeh Faezeh Hashemi Karouei
    • 1
  • Hossain Milani Moghaddam
    • 1
    Email author
  1. 1.Solid State Physics DepartmentUniversity of MazandaranBabolsarIran

Personalised recommendations