Skip to main content
Log in

A facile synthesis of antimony-doped tin oxide-coated TiO2 composites and their electrical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Antimony-doped tin oxide (ATO) coated TiO2 (TiO2@ATO) conductive composites were synthesized by a sol–gel method using acetylacetone as the chelating agent in water based. As-synthesized samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electronic microscopy and high-resolution transmission electron microscopy, thermogravimetric analysis, ultraviolet–visible (UV–Vis) spectroscopy and Fourier transform infrared spectroscopy. The results showed that the optical band gap gradually decreases from 3.081 eV to 3.068 eV with the increase of antimony doping concentration. The optimal molar ratio of acetylacetone to metal ions was 4 while the water content was 50 mL. When the antimony doping concentration was 35 mol%, TiO2@ATO composite possessed the lowest resistivity of 4.5 Ω cm. ATO nanoparticles with an average particle size of 8.3 nm formed a shell of about 10 nm on the surface of TiO2. In addition, the corresponding formation mechanism of TiO2@ATO composite was proposed on the basis of the experimental analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, Y. Jin, Fabrication of p-type SnO2 films via pulsed laser deposition method by using Sb as dopant. Appl. Surf. Sci. 286, 417–420 (2013)

    Article  Google Scholar 

  2. Y. Ren, G. Zhao, Y. Chen, Fabrication of textured SnO2:F thin films by spray pyrolysis. Appl. Surf. Sci. 258, 914–918 (2011)

    Article  Google Scholar 

  3. C. Hudaya, B.J. Jeon, J.K. Lee, High thermal performance of SnO2:F thin transparent heaters with scattered metal nanodots. ACS Appl. Mater. Interfaces. 7, 57–61 (2015)

    Article  Google Scholar 

  4. C.L. Hsu, Y.C. Lu, Fabrication of a transparent ultraviolet detector by using n-type Ga2O3 and p-type Ga-doped SnO2 core-shell nanowires. Nanoscale 4, 5710–5717 (2012)

    Article  Google Scholar 

  5. M. Stefik, M. Cornuz, N. Mathews, T. Hisatomi, S. Mhaisalkar, M. Gratzel, Transparent, conducting Nb:SnO2 for host-guest photoelectrochemistry. Nano Lett. 12, 5431–5435 (2012)

    Article  Google Scholar 

  6. J. Mazloom, F.E. Ghodsi, M. Gholami, Fiber-like stripe ATO (SnO2:Sb) nanostructured thin films grown by sol–gel method: optical, topographical and electrical properties. J. Alloys Compd. 579, 384–393 (2013)

    Article  Google Scholar 

  7. J.M. Xu, L. Li, S. Wang, H.L. Ding, Y.X. Zhang, G.H. Li, Influence of Sb doping on the structural and optical properties of tin oxide nanocrystals. CrystEngComm 15, 3296 (2013)

    Article  Google Scholar 

  8. Y. Wang, I. Djerdj, B. Smarsly, M. Antonietti, Antimony-doped SnO2 nanopowders with high crystallinity for lithium-ion battery electrode. Chem. Mater. 21, 3202–3209 (2009)

    Article  Google Scholar 

  9. Y. Wang, J. Zheng, F. Jiang, M. Zhang, Synthesis and conductive performance of antimony-doped tin oxide-coated TiO2 by the co-precipitation method. J. Mater. Sci. 25, 4524–4530 (2014)

    Google Scholar 

  10. H.Y.P. Hu, Controlled coating of antimony-doped tin oxide nanoparticles on kaolinite particles. Appl. Clay. Sci. 48, 368–374 (2010)

    Article  Google Scholar 

  11. S. Sladkevich, N. Kyi, J. Gun, P. Prikhodchenko, S. Ischuk, O. Lev, Antimony doped tin oxide coating of muscovite clays by the Pechini route. Thin Solid Films 520, 152–158 (2011)

    Article  Google Scholar 

  12. P. Hu, H. Yang, Polypropylene filled with kaolinite-based conductive powders. Appl. Clay. Sci. 83–84, 122–128 (2013)

    Article  Google Scholar 

  13. W. Liu, Y. Wang, M. Ge, Q. Gao, One-dimensional light-colored conductive antimony-doped tin oxide@TiO2 whiskers: synthesis and applications. J. Mater. Sci. 29, 619–627 (2017)

    Google Scholar 

  14. Y. Li, J. Wang, B. Feng, K. Duan, J. Weng, Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles with high conductivity using a facile ammonia-diffusion co-precipitation method. J. Alloys Compd. 634, 37–42 (2015)

    Article  Google Scholar 

  15. R. Outemzabet, N. Bouras, N. Kesri, Microstructure and physical properties of nanofaceted antimony doped tin oxide thin films deposited by chemical vapor deposition on different substrates. Thin Solid Films 515, 6518–6520 (2007)

    Article  Google Scholar 

  16. C.M.N. Naghavi, L. Dupont, J.B. Leriche, J.M. Tarascon, On the electrochromic properties of antimony–tin oxide thin films deposited by pulsed laser deposition. Solid State Ionics 156, 463–474 (2003)

    Article  Google Scholar 

  17. Y. Hu, H. Zhong, Y. Wang, L. Lu, H. Yang, TiO2/antimony-doped tin oxide: highly water-dispersed nano composites with excellent IR insulation and super-hydrophilic property. Sol. Energy Mater. Sol. Cells 174, 499–508 (2018)

    Article  Google Scholar 

  18. L.S. Wang, H.F. Lu, R.Y. Hong, W.G. Feng, Synthesis and electrical resistivity analysis of ATO-coated talc. Powder Technol. 224, 124–128 (2012)

    Article  Google Scholar 

  19. S.S. Lekshmy, G.P. Daniel, K. Joy, Microstructure and physical properties of sol gel derived SnO2: Sb thin films for optoelectronic applications. Appl. Surf. Sci. 274, 95–100 (2013)

    Article  Google Scholar 

  20. B. Rodríguez García, Á. Reyes Carmona, I. Jiménez Morales, M. Blasco Ahicart, S. Cavaliere, M. Dupont, D. Jones, J. Rozière, J.R. Galán Mascarós, F. Jaouen, Cobalt hexacyanoferrate supported on Sb-doped SnO2 as a non-noble catalyst for oxygen evolution in acidic medium. Sustain. Energy Fuels 2, 589–597 (2018)

    Article  Google Scholar 

  21. J. Zhang, L. Gao, Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles. Inorg. Chem. Commun. 7, 91–93 (2004)

    Article  Google Scholar 

  22. X. Zhong, B. Yang, X. Zhang, J. Jia, G. Yi, Effect of calcining temperature and time on the characteristics of Sb-doped SnO2 nanoparticles synthesized by the sol–gel method. Particuology 10, 365–370 (2012)

    Article  Google Scholar 

  23. Y. Li, J. Liu, J. Liang, X. Yu, D. Li, Tunable solar-heat shielding property of transparent films based on mesoporous Sb-doped SnO2 microspheres. ACS Appl. Mater. Interfaces 7, 6574–6583 (2015)

    Article  Google Scholar 

  24. Y.Q. Li, J.L. Wang, S.Y. Fu, S.G. Mei, J.M. Zhang, K. Yong, Facile synthesis of antimony-doped tin oxide nanoparticles by a polymer-pyrolysis method. Mater. Res. Bull. 45, 677–681 (2010)

    Article  Google Scholar 

  25. S. Liu, W. Ding, Y. Gu, W. Chai, Effect of Sb doping on the microstructure and optoelectrical properties of Sb-doped SnO2 films prepared by spin coating. Phys. Scr. 85, 065601 (2012)

    Article  Google Scholar 

  26. H. Liu, T. Lv, C. Zhu, X. Su, Z. Zhu, Efficient synthesis of MoS2 nanoparticles modified TiO2 nanobelts with enhanced visible-light-driven photocatalytic activity. J. Mol. Catal. A 396, 136–142 (2015)

    Article  Google Scholar 

  27. M. Radecka, A. Wnuk, A. Trenczek Zajac, K. Schneider, K. Zakrzewska, TiO2/SnO2 nanotubes for hydrogen generation by photoelectrochemical water splitting. Int. J. Hydrog. Energy 40, 841–851 (2015)

    Article  Google Scholar 

  28. K. Maeda, N. Murakami, T. Ohno, Dependence of activity of rutile titanium(IV) oxide powder for photocatalytic overall water splitting on structural properties. J. Phys. Chem. C 118, 9093–9100 (2014)

    Article  Google Scholar 

  29. X. Xu, G. Yang, J. Liang, S. Ding, C. Tang, H. Yang, W. Yan, G. Yang, D. Yu, Fabrication of one-dimensional heterostructured TiO2@SnO2 with enhanced photocatalytic activity. J. Mater. Chem. A 2, 116–122 (2014)

    Article  Google Scholar 

  30. J. Mazloom, F.E. Ghodsi, H. Zamani, H. Golmojdeh, Relation between physical properties, enhanced photodegradation of organic dyes and antibacterial potential of Sn1−xSbxO2 nanoparticles. J. Mater. Sci. 28, 2183–2192 (2016)

    Google Scholar 

  31. J. Mazloom, F.E. Ghodsi, Spectroscopic, microscopic, and electrical characterization of nanostructured SnO2: Co thin films prepared by sol–gel spin coating technique. Mater. Res. Bull. 48, 1468–1476 (2013)

    Article  Google Scholar 

  32. A.S. Ahmed, M. Shafeeq, M.L. Singla, S. Tabassum, A.H. Naqvi, A. Azam, Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J. Lumin. 131, 1–6 (2011)

    Article  Google Scholar 

  33. S. Park, S.D. Seo, S. Lee, S.W. Seo, K.S. Park, C.W. Lee, D.W. Kim, K.S. Hong, Sb:SnO2@TiO2 heteroepitaxial branched nanoarchitectures for Li ion battery electrodes. J. Phys. Chem. C 116, 21717–21726 (2012)

    Article  Google Scholar 

  34. V. Müller, M. Rasp, G. Štefanić, J. Ba, S. Günther, J. Rathousky, M. Niederberger, D. Fattakhova Rohlfing, Highly conducting nanosized monodispersed antimony-doped tin oxide particles synthesized via nonaqueous sol−gel procedure. Chem. Mater. 21, 5229–5236 (2009)

    Article  Google Scholar 

  35. A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, Sensing properties of sprayed antimony doped tin oxide thin films: solution molarity. J. Alloys Compd. 509, 3108–3115 (2011)

    Article  Google Scholar 

  36. Y. Wang, T. Chen, Nonaqueous and template-free synthesis of Sb doped SnO2 microspheres and their application to lithium-ion battery anode. Electrochim. Acta 54, 3510–3515 (2009)

    Article  Google Scholar 

  37. J.P. Correa Baena, A.G. Agrios, Transparent conducting aerogels of antimony-doped tin oxide. ACS Appl. Mater. Interfaces 6, 19127–19134 (2014)

    Article  Google Scholar 

  38. F. Montilla, A. De Battisti, S. Barison, S. Daolio, J.L. Va’zquez, Preparation and characterization of antimony-doped tin dioxide electrodes 3 XPS and SIMS characterization. J. Phys. Chem. B 108, 15976–15981 (2004)

    Article  Google Scholar 

  39. T. Krishnakumar, R. Jayaprakash, N. Pinna, A.R. Phani, M. Passacantando, S. Santucci, Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles. J. Phys. Chem. Solids 70, 993–999 (2009)

    Article  Google Scholar 

  40. A.M. Volosin, S. Sharma, C. Traverse, N. Newman, D.K. Seo, One-pot synthesis of highly mesoporous antimony-doped tin oxide from interpenetrating inorganic/organic networks. J. Mater. Chem. 21, 13232 (2011)

    Article  Google Scholar 

  41. T. Krishnakumar, R. Jayaprakash, M. Parthibavarman, A.R. Phani, V.N. Singh, B.R. Mehta, Microwave-assisted synthesis and investigation of SnO2 nanoparticles. Mater. Lett. 63, 896–898 (2009)

    Article  Google Scholar 

  42. L.K. Dua, A. De, S. Chakraborty, P.K. Biswas, Study of spin coated high antimony content Sn–Sb oxide films on silica glass. Mater. Charact. 59, 578–586 (2008)

    Article  Google Scholar 

  43. L.C.C. Jeffrey, C.S. Wu, An improved synthesis of ultrafiltration zirconia membranes via the sol-gel route using alkoxide precursor. J. Membr. Sci. 167, 253–261 (2000)

    Article  Google Scholar 

  44. S.J. Bu, Z.G. Jin, X.X. Liu, L.R. Yang, Z.J. Cheng, Synthesis of TiO2 porous thin films by polyethylene glycol templating and chemistry of the process. J. Eur. Ceram. Soc. 25, 673–679 (2005)

    Article  Google Scholar 

  45. P. Hu, H. Yang, Sb–SnO2 nanoparticles onto kaolinite rods: assembling process and interfacial investigation. Phys. Chem. Miner. 39, 339–349 (2012)

    Article  Google Scholar 

  46. Y. Du, J. Yan, Q. Meng, J. Wang, H. Dai, Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure. Mater. Chem. Phys. 133, 907–912 (2012)

    Article  Google Scholar 

  47. P. Hu, H. Yang, J. Ouyang, Synthesis and characterization of Sb–SnO2/kaolinites nanoparticles. Appl. Clay. Sci. 55, 151–157 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (21878024 and 21606023), the Innovation Team Project of Liaoning Province (LT2015001) and Scientific Public Welfare Research Foundation of Liaoning Province (20170054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Qian, J., Li, J. et al. A facile synthesis of antimony-doped tin oxide-coated TiO2 composites and their electrical properties. J Mater Sci: Mater Electron 30, 9289–9302 (2019). https://doi.org/10.1007/s10854-019-01259-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01259-3

Navigation