Electrochemical investigation of hybridized WO3–CdS semiconducting nanostructures prepared by microwave-assisted wet chemical route for supercapacitor application

  • P. Periasamy
  • T. KrishnakumarEmail author
  • M. Sandhiya
  • M. Sathish
  • Murthy Chavali
  • Prem Felix Siril
  • V. P. Devarajan


Herein, we are reporting the enhanced electrochemical performance of hybridised WO3–CdS nanocomposites prepared by microwave assisted wet chemical route without post synthesis of heating for different wt% of CdS (2 wt%, 4 wt% and 6 wt%) loading with WO3. Then, the end products were characterized by various techniques to evaluate their structural and morphology, thermal, optical, and electrochemical properties. From the XRD analysis, the orthorhombic and monoclinic structure of WO3 and hexagonal phase of CdS were observed and the average crystalline size is calculated as ± 19 nm. The microscopic examination such as SEM images showed smooth and tiny particle and HRTEM images showed rod shape morphology in the as-prepared particle. The presence of W and Cd elements are confirmed by EDAX analysis. The existences of functional groups related to W and Cd are analyzed by FTIR investigation and confirmed the chemical bonding nature. Thermal (TGA/DTA) analysis showed that as-prepared structures are stable up to 450°C temperature. The electrochemical investigations have been carried out, and their enhanced specific capacitances were calculated as 44 F/g for pure WO3 (a) nanostructures and 48, 170, and 172 F/g correspondingly for the hybridised WO3–CdS (b, c, d) nanocomposites.



  1. 1.
    J. Wan, T. Song, C. Flox, J. Yang, Q.H. Yang, X. Han, Advanced nanomaterials for energy-related applications. J. Nanomater. 2015, 7 (2015). Google Scholar
  2. 2.
    S. Logothetidis (ed.), Nanostructured materials and their applications (Springer, New York, 2012). Google Scholar
  3. 3.
    S.K. Srivastava, V. Mittal (eds.), Hybrid nanomaterials: advances in energy, environment, and polymer nanocomposites (Wiley, Hoboken, 2017). Google Scholar
  4. 4.
    D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuators B 204, 250–272 (2014). CrossRefGoogle Scholar
  5. 5.
    Q. Zhao, W.W. Yu, Y. Sun, R. Cong, Q. Xiang, N. Qin, N. Dai, WO3 nanoparticles based gas sensor for acetone detection with high sensitivity and fast response. Sens. Lett. 13(10), 895–899 (2015). CrossRefGoogle Scholar
  6. 6.
    N. Prabhu, S. Agilan, N. Muthukumarasamy, T.S. Senthil, Enhanced photovoltaic performance of WO3 nanoparticles added dye-sensitized solar cells. J. Mater. Sci.: Mater. Electron. 25(12), 5288–5295 (2014). Google Scholar
  7. 7.
    Z. Hai, M.K. Akbari, Z. Wei, C. Xue, H. Xu, J. Hu, S. Zhuiykov, Nano-thickness dependence of supercapacitor performance of the ALD-fabricated two-dimensional WO3. Electrochim. Acta 246, 625–633 (2017). CrossRefGoogle Scholar
  8. 8.
    Y. Luo, D. Kong, J. Luo, S. Chen, D. Zhang, K. Qiu, T. Yu, Hierarchical TiO2 nanobelts@ MnO2 ultrathin nanoflakes core-shell array electrode materials for supercapacitors. RSC Adv. 3(34), 14413–14422 (2013). CrossRefGoogle Scholar
  9. 9.
    J. Zhang, Y. Wang, Y. Qin, C. Yu, L. Cui, X. Shu, J. Cui, H. Zheng, Y. Zhang, Y. Wu, A facile one-step synthesis of Mn3O4 nanoparticles-decorated TiO2 nanotube arrays as high performance electrode for supercapacitors. J. Solid State Chem. 246, 269–277 (2017). CrossRefGoogle Scholar
  10. 10.
    Y. Zhao, L. Xu, S. Huang, J. Bao, J. Qiu, J. Lian, L. Xu, Y. Huang, Y. Xu, H. Li, Facile preparation of TiO2/C3N4 hybrid materials with enhanced capacitive properties for high performance supercapacitors. J. Alloys Compd. 702, 178–185 (2017). CrossRefGoogle Scholar
  11. 11.
    Y. Cai, Y. Wang, S. Deng, G. Chen, Q. Li, B. Han, R. Han, Y. Wang, Graphene nanosheets-tungsten oxides composite for supercapacitor electrode. Ceram. Int. 40(3), 4109–4116 (2014). CrossRefGoogle Scholar
  12. 12.
    J. Chen, H. Wang, J. Deng, C. Xu, Y. Wang, Low-crystalline tungsten trioxide anode with superior electrochemical performance for flexible solid-state asymmetry supercapacitor. J. Mater. Chem. A 6(19), 8986–8991 (2018). CrossRefGoogle Scholar
  13. 13.
    B. Zou, S. Gong, Y. Wang, X. Liu, Tungsten oxide and polyaniline composite fabricated by surfactant-templated electrodeposition and its use in supercapacitors. J. Nanomater. 2014, 3 (2014). Google Scholar
  14. 14.
    S. Cong, Y. Tian, Q. Li, Z. Zhao, F. Geng, Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv. Mater. 26(25), 4260–4267 (2014). CrossRefGoogle Scholar
  15. 15.
    R.D. Kumar, S. Karuppuchamy, Microwave-assisted synthesis of copper tungstate nano powder for supercapacitor applications. Ceram. Int. 40(8), 12397–12402 (2014). CrossRefGoogle Scholar
  16. 16.
    H. Wei, D. Ding, X. Yan, J. Guo, L. Shao, H. Chen, L. Sun, H.A. Colorado, S. Wei, Z. Guo, Tungsten trioxide/zinc tungstate bilayers: electrochromic behaviors, energy storage and electron transfer. Electrochim. Acta 132, 58–66 (2014). CrossRefGoogle Scholar
  17. 17.
    R.D. Kumar, Y. Andou, S. Karuppuchamy, Synthesis and characterization of nanostructured Ni-WO3 and NiWO4 for supercapacitor applications. J. Alloys Compd. 654, 349–356 (2016). CrossRefGoogle Scholar
  18. 18.
    K. Sun, H. Peng, J. Mu, G. Ma, G. Zhao, Z. Lei, High energy density asymmetric supercapacitors based on polyaniline nanotubes and tungsten trioxide rods. Ionics 21(8), 2309–2317 (2015). CrossRefGoogle Scholar
  19. 19.
    R.D. Kumar, Y. Andou, M. Sathish, S. Karuppuchamy, Synthesis of nanostructured Cu-WO3 and CuWO4 for supercapacitor applications. J. Mater. Sci.: Mater. Electron. 27(3), 2926–2932 (2016). Google Scholar
  20. 20.
    R.D. Kumar, Y. Andou, S. Karuppuchamy, Facile synthesis of Co–WO3/functionalized carbon nanotube nanocomposites for supercapacitor applications. J. Mater. Sci.: Mater. Electron. 28(7), 5425–5434 (2017). Google Scholar
  21. 21.
    V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370(6488), 354 (1994). CrossRefGoogle Scholar
  22. 22.
    M. Sathish, B. Viswanathan, R.P. Viswanath, Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting. Int. J. Hydrogen Energy 31(7), 891–898 (2006). CrossRefGoogle Scholar
  23. 23.
    H. Kim, Y. Tak, K. Senthil, J. Joo, S. Jeon, K. Yong, Novel heterostructure of CdS nanoparticle/WO3 nanowhisker: synthesis and photocatalytic properties. J. Vac. Sci. Technol. B 27(5), 2182–2186 (2009). CrossRefGoogle Scholar
  24. 24.
    Z.G. Zhao, Z.F. Liu, M. Miyauchi, Tailored remote photochromic coloration of in situ synthesized CdS quantum dot loaded WO3 films. Adv. Funct. Mater. 20(23), 4162–4167 (2010). CrossRefGoogle Scholar
  25. 25.
    H. Li, Y. Zhou, L. Chen, W. Luo, Q. Xu, X. Wang, M. Xiao, Z. Zou, Rational and scalable fabrication of high-quality WO3/CdS core/shell nanowire arrays for photoanodes toward enhanced charge separation and transport under visible light. Nanoscale 5(23), 11933–11939 (2013). CrossRefGoogle Scholar
  26. 26.
    L.J. Zhang, S. Li, B.K. Liu, D.J. Wang, T.F. Xie, Highly efficient CdS/WO3 photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light. ACS Catal. 4(10), 3724–3729 (2014). CrossRefGoogle Scholar
  27. 27.
    K. Villa, X. Domènech, U.M. García-Pérez, J. Peral, Photocatalytic hydrogen production under visible light by using a CdS/WO3 composite. Catal. Lett. 146(1), 100–108 (2016). CrossRefGoogle Scholar
  28. 28.
    J. Jin, J. Yu, D. Guo, C. Cui, W. Ho, A hierarchical Z-scheme CdS–WO3 photocatalyst with enhanced CO2 reduction activity. Small 11(39), 5262–5271 (2015). CrossRefGoogle Scholar
  29. 29.
    Y. Wang, C. Gao, S. Ge, J. Yu, M. Yan, Platelike WO3 sensitized with CdS quantum dots heterostructures for photoelectrochemical dynamic sensing of H2O2 based on enzymatic etching. Biosens. Bioelectron. 85, 205–211 (2016). CrossRefGoogle Scholar
  30. 30.
    P. Palanisamy, K. Thangavel, S. Murugesan, S. Marappan, M. Chavali, P.F. Siril, D.V. Perumal, Investigating the synergistic effect of hybridized WO3-ZnS nanocomposite prepared by microwave-assisted wet chemical method for supercapacitor application. J. Electroanal. Chem. (2018). Google Scholar
  31. 31.
    H.F. Pang, X. Xiang, Z.J. Li, Y.Q. Fu, X.T. Zu, Hydrothermal synthesis and optical properties of hexagonal tungsten oxide nanocrystals assisted by ammonium tartrate. Phys. Status Solidi (a) 209(3), 537–544 (2012). CrossRefGoogle Scholar
  32. 32.
    P. Porkodi, V. Yegnaraman, D. Jeyakumar, Polyol mediated synthesis of tungsten trioxide and Ti doped tungsten trioxide: part 1: synthesis and characterisation of the precursor material. Mater. Res. Bull. 41(8), 1476–1486 (2006). CrossRefGoogle Scholar
  33. 33.
    M. Deepa, N. Sharma, P. Varshney, S.P. Varma, S.A. Agnihotry, FTIR investigations of solid precursor materials for sol-gel deposition of WO3 based electrochromic films. J. Mater. Sci. 35(21), 5313–5318 (2000). CrossRefGoogle Scholar
  34. 34.
    H.I. Nogueira, A.M. Cavaleiro, J. Rocha, T. Trindade, J.D.P. de Jesus, Synthesis and characterization of tungsten trioxide powders prepared from tungstic acids. Mater. Res. Bull. 39(4–5), 683–693 (2004). CrossRefGoogle Scholar
  35. 35.
    P. Kumar, N. Saxena, F. Singh, A. Agarwal, Nano twinning in CdS quantum dots. Physica B 407(17), 3347–3351 (2012). CrossRefGoogle Scholar
  36. 36.
    P. Thangadurai, S. Balaji, P.T. Manoharan, Surface modification of CdS quantum dots using thiols—structural and photo physical studies. Nanotechnology 19(43), 435708 (2008). CrossRefGoogle Scholar
  37. 37.
    S. Bai, K. Zhang, L. Wang, J. Sun, R. Luo, D. Li, A. Chen, Synthesis mechanism and gas-sensing application of nanosheet-assembled tungsten oxide microspheres. J. Mater. Chem. A 2(21), 7927–7934 (2014). CrossRefGoogle Scholar
  38. 38.
    L.E. Brus, Electron–electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80(9), 4403–4409 (1984). CrossRefGoogle Scholar
  39. 39.
    Y.I. Kim, S.J. Atherton, E.S. Brigham, T.E. Mallouk, Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors. J. Phys. Chem. 97(45), 11802–11810 (1993). CrossRefGoogle Scholar
  40. 40.
    M.A. Butler, D.S. Ginley, Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. J. Electrochem. Soc. 125(2), 228–232 (1978). CrossRefGoogle Scholar
  41. 41.
    M. Gotić, M. Ivanda, S. Popović, S. Musić, Synthesis of tungsten trioxide hydrates and their structural properties. Mater. Sci. Eng. B 77(2), 193–201 (2000). CrossRefGoogle Scholar
  42. 42.
    J.E. Evans, K.W. Springer, J.Z. Zhang, Femto second studies of interparticle electron transfer in a coupled CdS–TiO2 colloidal system. J. Chem. Phys. 101(7), 6222–6225 (1994). CrossRefGoogle Scholar
  43. 43.
    S.J. Hong, S. Lee, J.S. Jang, J.S. Lee, Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 4(5), 1781–1787 (2011). CrossRefGoogle Scholar
  44. 44.
    P. Prasannalakshmi, N. Shanmugam, A.S. Kumar, Electrochemistry of TiO2/CdS composite electrodes for supercapacitor applications. J. Appl. Electrochem. 47(8), 889–903 (2017). CrossRefGoogle Scholar
  45. 45.
    X. Zhang, X. Ge, S. Sun, Y. Qu, W. Chi, C. Chen, W. Lü, Morphological control of RGO/CdS hydrogels for energy storage. CrystEngComm 18(7), 1090–1095 (2016). CrossRefGoogle Scholar
  46. 46.
    D.S. Patil, S.A. Pawar, J.C. Shin, Core-shell structure of Co3O4@ CdS for high performance electrochemical supercapacitor. Chem. Eng. J. 335, 693–702 (2018). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • P. Periasamy
    • 1
  • T. Krishnakumar
    • 2
    Email author
  • M. Sandhiya
    • 3
  • M. Sathish
    • 3
  • Murthy Chavali
    • 4
  • Prem Felix Siril
    • 5
  • V. P. Devarajan
    • 6
  1. 1.Gnanamani College of Engineering, PachalNamakkalIndia
  2. 2.Tagore Institute of Engineering and Technology, AtturSalemIndia
  3. 3.Functional Materials DivisionCSIR-Central Electrochemical Research InstituteKaraikudiIndia
  4. 4.MCETRC, TenaliGunturIndia
  5. 5.School of Basic SciencesIndian Institute of TechnologyMandiIndia
  6. 6.K.S.R. Arts College for Women, TiruchengodeNamakkalIndia

Personalised recommendations