Solution blow spinning control of morphology and production rate of complex superconducting YBa2Cu3O7−x nanowires

  • M. Rotta
  • M. Motta
  • A. L. Pessoa
  • C. L. Carvalho
  • W. A. Ortiz
  • R. ZadorosnyEmail author


Nanostructured materials have the potential to be applied in different areas ranging from electronics to medicine. Techniques for preparation of nanomaterials with a high production rate are essential to make them commercially available. In this work, complex superconducting YBa2Cu3O7−x wires were prepared by using the solution blow spinning technique with different solution injection rates (SIRs): 60, 80 and 100 μL/min. We show that the diameter of the YBCO wires increases from 258 to 954 nm for higher SIRs without any trace of secondary phases as investigated by X-ray diffractograms. Nonetheless, SIR does not supply the real ceramic production rate, which is 4.7 to 33 times higher than the rates of equivalent ceramics produced by Electrospinning. Furthermore, the magnetic properties of the YBCO wires were verified, presenting similar superconducting responses.



We acknowledge the Brazilian agencies São Paulo Research Foundation (FAPESP, Grant 2016/12390-6), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, National Council of Scientific and Technological Development (CNPq, grant 302564/2018-7) and Instituto Federal do Mato Grosso do Sul (IFMS).


  1. 1.
    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003)CrossRefGoogle Scholar
  2. 2.
    S. Chaturvedi, N.D. Dave, Design process for nanomaterials. J. Mater. Sci. 48, 3605–3622 (2013)CrossRefGoogle Scholar
  3. 3.
    F. Piccinno, F. Gottschalk, S. Seeger, B. Nowack, Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanopart. Res. 14, 1109 (2012)CrossRefGoogle Scholar
  4. 4.
    Q. Zhang, J.Q. Huang, W.Z. Quian, Y.Y. Zhang, F. Wei, The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9, 1237–1265 (2013)CrossRefGoogle Scholar
  5. 5.
    X.Y. Wang, S.H. Lee, C. Drew, K.J. Senecal, J. Kumar, L.A. Samuelson, Highly sensitive optical sensors using electrospun polymeric nanofibrous membranes. Mater. Res. Soc. Symp. Proc. 708, 397–402 (2002)Google Scholar
  6. 6.
    X.Y. Wang, C. Drew, S.H. Lee, K.J. Senecal, J. Kumar, L.A. Samuelson, Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett. 2, 1273–1275 (2002)CrossRefGoogle Scholar
  7. 7.
    A.G. Scopelianos, US patent 5522879, 1996Google Scholar
  8. 8.
    A. Barhoum, M. Bechelany, A.S. Hamdymakhlouf (eds.), Handbook of Nanofibers. Vol. I: Fundamental Aspects and Experimental Setup (Springer, Berlin, 2018). ISBN: 9783319536545Google Scholar
  9. 9.
    N. Bhardwaj, S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. India 28, 325–347 (2010)CrossRefGoogle Scholar
  10. 10.
    X.L. Zeng, M.R. Koblisschka, T. Karwoth, T. Hauet, U. Hartmann, Preparation of granular Bi-2212 nanowires by electrospinning. Supercond. Sci. Technol. 30, 035014 (2017)CrossRefGoogle Scholar
  11. 11.
    X.M. Cui, W.S. Lyoo, W.K. Son, D.H. Park, J.H. Choy, T.S. Lee, W.H. Park, Fabrication of YBa2Cu3O7−δ superconducting nanofibres by electrospinning. Supercond. Sci. Technol. 19, 1264–1268 (2006)CrossRefGoogle Scholar
  12. 12.
    Z.M. Huang, Z.Y. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003)CrossRefGoogle Scholar
  13. 13.
    C. Mu, Y. Song, A. Liu, X. Wang, J. Hu, H. Ji, H. Zhang, Electrospun Cu2ZnSnS4 microfibers with strong (112) preferred orientation: fabrication and characterization Chunhong. RSC Adv. 5, 15749–15755 (2015)CrossRefGoogle Scholar
  14. 14.
    E.S. Medeiros, G.M. Glenn, A.P. Klamczynski, W.J. Oorts, L.H.C. Mattoso, Solution blow spinning: a new method to produce micro- and nanofibers from polymer solutions. J. Appl. Polym. Sci. 113, 2322–2330 (2009)CrossRefGoogle Scholar
  15. 15.
    J.L. Daristotle, A.M. Behrens, A.D. Sandler, P. Kofinas, A review of the fundamental principles and applications of solution blow spinning. Appl. Mater. Interfaces 8, 34951–34963 (2016)CrossRefGoogle Scholar
  16. 16.
    J.E. Oliveira, E.A. Moraes, R.G.F. Costa, A.S. Afonso, L.H.C. Mattoso, W.J. Orts, E.S. Medeiros, Nano and submicrometric fibers of Poly(d, l-Lactide) obtained by solution Blow spinning: process and solution variables. J. Appl. Polym. Sci. 122, 3396–3405 (2011)CrossRefGoogle Scholar
  17. 17.
    E.A. Duarte, P.A. Quintero, M.W. Meisel, J.C. Nino, Electrospinning synthesis of superconducting BSCCO nanowires. Phys. C Supercond. Appl. 495, 109–113 (2013)CrossRefGoogle Scholar
  18. 18.
    E.A. Duarte, N.G. Rudawski, P.A. Quintero, M.W. Meisel, J.C. Nino, Electrospinning of superconducting YBCO nanowires. Supercond. Sci. Technol. 28, 15006 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Yuh, J.C. Nino, W.A. Sigmund, Synthesis of barium titanate (BaTiO3) nanofibers via electrospinning. Mater. Lett. 59, 3645–3647 (2005)CrossRefGoogle Scholar
  20. 20.
    J. Yuh, L. Perez, W.M. Sigmund, J.C. Nino, Sol–gel based synthesis of complex oxide nanofibers. J. Sol Gel Sci. Technol. 42, 323–329 (2007)CrossRefGoogle Scholar
  21. 21.
    J. Yuh, L. Perez, W.M. Sigmund, J.C. Nino, Electrospinning of complex oxide nanofibers. Physica E 37, 254–259 (2007)CrossRefGoogle Scholar
  22. 22.
    D.L. Costa, R.S. Leite, G.A. Neves, L.N.D.L. Santana, E.S. Medeiros, R.R. Menezes, Synthesis of TiO2 and ZnO nano and submicrometric fibers by solution blow spinning. Mater. Lett. 183, 109–113 (2016)CrossRefGoogle Scholar
  23. 23.
    R.M.C. Farias, R.R. Menezes, J.E. Oliveira, E.S. Medeiros, Production of submicrometric fibers of mullite by solution blow spinning (SBS). Mater. Lett. 149, 47 (2015)CrossRefGoogle Scholar
  24. 24.
    M. Rotta, L. Zadorosny, C.L. Carvalho, J.A. Malmonge, L.F. Malmonge, R. Zadorosny, YBCO ceramic nano fibers obtained by the new technique of solution blow spinning. Ceram. Int. 42, 16230–16234 (2016)CrossRefGoogle Scholar
  25. 25.
    K. Xu, J.R. Heath, Long, highly-ordered high-temperature superconductor nanowire arrays. Nano Lett. 8(11), 3845–3849 (2008)CrossRefGoogle Scholar
  26. 26.
    A. Bezryadin, C.N. Lau, M. Tinkham, Quantum suppression of superconductivity in ultrathin nanowires. Nature 404, 971 (2000)CrossRefGoogle Scholar
  27. 27.
    M. Zgirski, K.P. Riikonen, V. Touboltsev, K. Arutyunov, Size dependent breakdown of superconductivity in ultranarrow nanowires. Nano Lett. 5, 6 (2005)CrossRefGoogle Scholar
  28. 28.
    C.P. Poole Jr., H.A. Farach, R.J. Creswick, Superconductivity (Academic Press, San Diego, 1995)Google Scholar
  29. 29.
    I. Holzman, Y. Ivry, Superconducting nanowires for single-photon detection: progress, challenges, and opportunities. Adv. Quantum Technol. (2019). Google Scholar
  30. 30.
    L. Nicodemo, L. Nicolais, Viscosity of bead suspensions in polymeric solutions. J. Appl. Polym. Sci. 18, 2809–2818 (1974)CrossRefGoogle Scholar
  31. 31.
    Y. Xiong, I. Washio, J. Chen, H. Cai, Z.Y. Li, Y. Xia, Poly(vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir 22, 8563–8570 (2006)CrossRefGoogle Scholar
  32. 32.
    M. Motta, C.V. Deimling, M.J. Saeki, P.N. Lisboa-Filho, Chelating agent effects in the synthesis of mesoscopic-size superconducting particles. J. Sol Gel Sci. Technol. 46, 201 (2008)CrossRefGoogle Scholar
  33. 33.
    Z. Shen, Y. Wang, W. Chen, L. Fei, K. Li, H.L.W. Chan, L. Bing, Electrospinning preparation and high-temperature superconductivity of YBa2Cu3O7−x nanotubes. J. Mater. Sci. 48, 3985–3990 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculdade de Engenharia de Ilha SolteiraUniversidade Estadual Paulista (UNESP)Ilha SolteiraBrazil
  2. 2.Instituto Federal de EducaçãoCiência e Tecnologia de Mato Grosso do Sul (IFMS)Três LagoasBrazil
  3. 3.Departamento de FísicaUniversidade Federal de São Carlos, UFSCarSão CarlosBrazil

Personalised recommendations